Suppr超能文献

L 型氨基酸转运体 LAT1 通过 mTORC1 通路抑制破骨细胞生成并维持骨稳态。

The L-type amino acid transporter LAT1 inhibits osteoclastogenesis and maintains bone homeostasis through the mTORC1 pathway.

机构信息

Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan.

Laboratory of Clinical Analytical Sciences, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan.

出版信息

Sci Signal. 2019 Jul 9;12(589):eaaw3921. doi: 10.1126/scisignal.aaw3921.

Abstract

L-type amino acid transporter 1 (LAT1), which is encoded by (), plays a crucial role in amino acid sensing and signaling in specific cell types, contributing to the pathogenesis of cancer and neurological disorders. Amino acid substrates of LAT1 have a beneficial effect on bone health directly and indirectly, suggesting a potential role for LAT1 in bone homeostasis. Here, we identified LAT1 in osteoclasts as important for bone homeostasis. expression was substantially reduced in osteoclasts in a mouse model of ovariectomy-induced osteoporosis. The osteoclast-specific deletion of in mice led to osteoclast activation and bone loss in vivo, and deficiency increased osteoclastogenesis in vitro. Loss of impaired activation of the mechanistic target of rapamycin complex 1 (mTORC1) pathway in osteoclasts, whereas genetic activation of mTORC1 corrected the enhanced osteoclastogenesis and bone loss in -deficient mice. Last, deficiency increased the expression of nuclear factor of activated T cells, cytoplasmic 1 () and the nuclear accumulation of NFATc1, a master regulator of osteoclast function, possibly through the canonical nuclear factor κB pathway and the Akt-glycogen synthase kinase 3β signaling axis, respectively. These findings suggest that the LAT1-mTORC1 axis plays a pivotal role in bone resorption and bone homeostasis by modulating NFATc1 in osteoclasts, thereby providing a molecular connection between amino acid intake and skeletal integrity.

摘要

L 型氨基酸转运蛋白 1(LAT1)由 ()编码,在特定细胞类型中的氨基酸感应和信号转导中发挥关键作用,导致癌症和神经紊乱的发病。LAT1 的氨基酸底物直接和间接地对骨骼健康有有益影响,这表明 LAT1 在骨稳态中可能具有作用。在这里,我们鉴定了破骨细胞中的 LAT1 对骨稳态很重要。在卵巢切除诱导的骨质疏松症小鼠模型中,破骨细胞中 的表达明显降低。在小鼠中特异性敲除 导致体内破骨细胞激活和骨丢失,并且体外 缺乏增加破骨细胞生成。 的缺失损害了破骨细胞中雷帕霉素靶蛋白复合物 1(mTORC1)途径的激活,而 mTORC1 的遗传激活纠正了 - 缺陷小鼠中增强的破骨细胞生成和骨丢失。最后, 缺乏增加了激活的 T 细胞核因子,细胞质 1()和核因子 NFATc1 的积累,NFATc1 是破骨细胞功能的主要调节因子,可能分别通过经典核因子 κB 途径和 Akt-糖原合酶激酶 3β 信号轴。这些发现表明,LAT1-mTORC1 轴通过调节破骨细胞中的 NFATc1 在骨吸收和骨稳态中发挥关键作用,从而为氨基酸摄入和骨骼完整性之间提供了分子联系。

相似文献

2
mTORC1 Inhibits NF-κB/NFATc1 Signaling and Prevents Osteoclast Precursor Differentiation, In Vitro and In Mice.
J Bone Miner Res. 2017 Sep;32(9):1829-1840. doi: 10.1002/jbmr.3172. Epub 2017 Jul 11.
3
The Blimp1-Bcl6 axis is critical to regulate osteoclast differentiation and bone homeostasis.
J Exp Med. 2010 Apr 12;207(4):751-62. doi: 10.1084/jem.20091957. Epub 2010 Apr 5.
4
miR-128 plays a critical role in murine osteoclastogenesis and estrogen deficiency-induced bone loss.
Theranostics. 2020 Mar 4;10(10):4334-4348. doi: 10.7150/thno.42982. eCollection 2020.
5
Conditional inactivation of the L-type amino acid transporter LAT1 in chondrocytes models idiopathic scoliosis in mice.
J Cell Physiol. 2022 Nov;237(11):4292-4302. doi: 10.1002/jcp.30883. Epub 2022 Sep 26.
6
Stimuli and Relevant Signaling Cascades for NFATc1 in Bone Cell Homeostasis: Friend or Foe?
Curr Stem Cell Res Ther. 2019;14(3):239-243. doi: 10.2174/1574888X14666181205122729.

引用本文的文献

1
Canagliflozin-Induced Adaptive Metabolism in Bone.
Diabetes. 2025 May 1;74(5):812-826. doi: 10.2337/db24-0955.
2
GRAMMAR-Lambda Delivers Efficient Understanding of the Genetic Basis for Head Size in Catfish.
Biology (Basel). 2025 Jan 13;14(1):63. doi: 10.3390/biology14010063.
3
Association Between Dietary Tryptophan Intake and Bone Health: A Cross-Sectional Study.
Calcif Tissue Int. 2024 Dec 14;116(1):6. doi: 10.1007/s00223-024-01329-7.
4
Functional characterization of the reveals its role in vitamin D biosynthesis.
Heliyon. 2024 Aug 17;10(17):e36466. doi: 10.1016/j.heliyon.2024.e36466. eCollection 2024 Sep 15.
5
Trophoblast-specific overexpression of the LAT1 increases transplacental transport of essential amino acids and fetal growth in mice.
PNAS Nexus. 2024 Jun 18;3(6):pgae207. doi: 10.1093/pnasnexus/pgae207. eCollection 2024 Jun.
7
Metabolic regulation of skeletal cell fate and function.
Nat Rev Endocrinol. 2024 Jul;20(7):399-413. doi: 10.1038/s41574-024-00969-x. Epub 2024 Mar 18.
8
10
Novel Insights into Osteoclast Energy Metabolism.
Curr Osteoporos Rep. 2023 Dec;21(6):660-669. doi: 10.1007/s11914-023-00825-3. Epub 2023 Oct 10.

本文引用的文献

1
mTORC1 impedes osteoclast differentiation via calcineurin and NFATc1.
Commun Biol. 2018 Apr 5;1:29. doi: 10.1038/s42003-018-0028-4. eCollection 2018.
2
Amino acid transporters revisited: New views in health and disease.
Trends Biochem Sci. 2018 Oct;43(10):752-789. doi: 10.1016/j.tibs.2018.05.003. Epub 2018 Aug 31.
4
mTOR signaling in skeletal development and disease.
Bone Res. 2018 Jan 30;6:1. doi: 10.1038/s41413-017-0004-5. eCollection 2018.
5
Amino acid homeostasis and signalling in mammalian cells and organisms.
Biochem J. 2017 May 25;474(12):1935-1963. doi: 10.1042/BCJ20160822.
6
mTORC1 Inhibits NF-κB/NFATc1 Signaling and Prevents Osteoclast Precursor Differentiation, In Vitro and In Mice.
J Bone Miner Res. 2017 Sep;32(9):1829-1840. doi: 10.1002/jbmr.3172. Epub 2017 Jul 11.
7
Essential Roles of L-Type Amino Acid Transporter 1 in Syncytiotrophoblast Development by Presenting Fusogenic 4F2hc.
Mol Cell Biol. 2017 May 16;37(11). doi: 10.1128/MCB.00427-16. Print 2017 Jun 1.
8
Bone Resorption Is Regulated by Circadian Clock in Osteoblasts.
J Bone Miner Res. 2017 Apr;32(4):872-881. doi: 10.1002/jbmr.3053. Epub 2017 Mar 3.
9
Impaired Amino Acid Transport at the Blood Brain Barrier Is a Cause of Autism Spectrum Disorder.
Cell. 2016 Dec 1;167(6):1481-1494.e18. doi: 10.1016/j.cell.2016.11.013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验