Suppr超能文献

使用粒子滤波和最大似然估计对麻疹传播的机理模型进行估计和预测。

Estimation and prediction for a mechanistic model of measles transmission using particle filtering and maximum likelihood estimation.

机构信息

Statistics, Pennsylvania State University, State College, PA.

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ.

出版信息

Stat Med. 2019 Sep 20;38(21):4146-4158. doi: 10.1002/sim.8290. Epub 2019 Jul 9.

Abstract

Disease incidence reported directly within health systems frequently reflects a partial observation relative to the true incidence in the population. State-space models present a general framework for inferring both the dynamics of infectious disease processes and the unobserved burden of disease in the population. Here, we present a state-space model of measles transmission and vaccine-based interventions at the country-level and a particle filter-based estimation procedure. Our dynamic transmission model builds on previous work by incorporating population age-structure to allow explicit representation of age-targeted vaccine interventions. We illustrate the performance of estimators of model parameters and predictions of unobserved states on simulated data from two dynamic models: one on the annual time-scale of observations and one on the biweekly time-scale of the epidemiological dynamics. We show that our model results in approximately unbiased estimates of unobserved burden and the underreporting rate. We further illustrate the performance of the fitted model for prediction of future disease burden in the next one to 15 years.

摘要

疾病发病率的直接报告往往反映了在人群中真实发病率的部分观察结果。状态空间模型为推断传染病过程的动态和人群中未观察到的疾病负担提供了一个通用框架。在这里,我们提出了一种基于国家层面的麻疹传播和疫苗干预的状态空间模型以及基于粒子滤波器的估计程序。我们的动态传播模型建立在前人的工作基础上,纳入了人口年龄结构,以允许明确表示针对年龄的疫苗干预措施。我们使用来自两个动态模型的模拟数据来演示模型参数估计器和未观察状态预测的性能:一个是基于观察的年度时间尺度,另一个是基于流行病学动态的双周时间尺度。我们表明,我们的模型可以得到未观察到的负担和漏报率的无偏估计。我们还进一步说明了拟合模型在预测未来 1 到 15 年内疾病负担方面的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8691/6771900/c7c745eea5c9/SIM-38-4146-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验