Suppr超能文献

物理能量助力受损组织修复。

Physical energies to the rescue of damaged tissues.

作者信息

Facchin Federica, Canaider Silvia, Tassinari Riccardo, Zannini Chiara, Bianconi Eva, Taglioli Valentina, Olivi Elena, Cavallini Claudia, Tausel Marco, Ventura Carlo

机构信息

Department of Experimental, Diagnostic and Specialty Medicine (DIMES), School of Medicine, University of Bologna, Bologna 40100, Italy.

National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy.

出版信息

World J Stem Cells. 2019 Jun 26;11(6):297-321. doi: 10.4252/wjsc.v11.i6.297.

Abstract

Rhythmic oscillatory patterns sustain cellular dynamics, driving the concerted action of regulatory molecules, microtubules, and molecular motors. We describe cellular microtubules as oscillators capable of synchronization and swarming, generating mechanical and electric patterns that impact biomolecular recognition. We consider the biological relevance of seeing the inside of cells populated by a network of molecules that behave as bioelectronic circuits and chromophores. We discuss the novel perspectives disclosed by mechanobiology, bioelectromagnetism, and photobiomodulation, both in term of fundamental basic science and in light of the biomedical implication of using physical energies to govern (stem) cell fate. We focus on the feasibility of exploiting atomic force microscopy and hyperspectral imaging to detect signatures of nanomotions and electromagnetic radiation (light), respectively, generated by the stem cells across the specification of their multilineage repertoire. The chance is reported of using these signatures and the diffusive features of physical waves to direct specifically the differentiation program of stem cells , where they already are resident in all the tissues of the human body. We discuss how this strategy may pave the way to a regenerative and precision medicine without the needs for (stem) cell or tissue transplantation. We describe a novel paradigm based upon boosting our inherent ability for self-healing.

摘要

节律性振荡模式维持细胞动力学,驱动调节分子、微管和分子马达的协同作用。我们将细胞微管描述为能够同步和聚集的振荡器,产生影响生物分子识别的机械和电模式。我们考虑了将细胞内部视为由作为生物电子电路和发色团的分子网络构成的生物学意义。我们从基础科学以及利用物理能量控制(干)细胞命运的生物医学意义两方面,讨论了机械生物学、生物电磁学和光生物调节所揭示的新观点。我们重点关注利用原子力显微镜和高光谱成像分别检测干细胞在其多谱系分化过程中产生的纳米运动和电磁辐射(光)特征的可行性。报告了利用这些特征以及物理波的扩散特性来特异性地指导干细胞分化程序的可能性,而干细胞已存在于人体的所有组织中。我们讨论了这种策略如何可能为无需(干)细胞或组织移植的再生医学和精准医学铺平道路。我们描述了一种基于增强我们自身愈合能力的新范式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a26/6600852/4e2b16d465eb/WJSC-11-297-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验