T'Joen Veronique, Vaneeckhaute Lieven, Priem Sara, Van Woensel Steven, Bekaert Sofie, Berneel Elke, Van Der Straeten Catherine
Bioresource Center Ghent, Health, Innovation and Research Center, Ghent University Hospital, Ghent, Belgium.
Data Management Unit, Health, Innovation and Research Center, Ghent University Hospital, Ghent, Belgium.
Front Med (Lausanne). 2019 Jun 25;6:137. doi: 10.3389/fmed.2019.00137. eCollection 2019.
The Bioresource center Ghent is the central hospital-integrated biobank of Ghent University Hospital. Our mission is to facilitate translational biomedical research by collecting, storing and providing high quality biospecimens to researchers. Several of our biobank partners store large amounts of cell lines. As cell lines are highly important both in basic research and preclinical screening phases, good annotation, authentication, and quality of these cell lines is pivotal in translational biomedical science. A Biobank Information Management System (BIMS) was implemented as sample and data management system for human bodily material. The samples are annotated by the use of defined datasets, based on the BRISQ (Biospecimen Reporting for Improved Study Quality) and Minimum Information About Biobank data Sharing (MIABIS) guidelines completed with SPREC (Standard PREanalytical Coding) information. However, the defined dataset for human bodily material is not ideal to capture the specific cell line data. Therefore, we set out to develop a rationalized cell line dataset. Through comparison of different datasets of online cell banks (human, animal, and stem cell), we established an extended cell line dataset of 156 data fields that was further analyzed until a smaller dataset-the survey dataset of 54 data fields-was obtained. The survey dataset was spread throughout our campus to all cell line users to rationalize the fields of the dataset and their potential use. Analysis of the survey data revealed only small differences in preferences in data fields between human, animal, and stem cell lines. Hence, one essential dataset for human, animal and stem cell lines was compiled consisting of 33 data fields. The essential dataset was prepared for implementation in our BIMS system. Good Clinical Data Management Practices formed the basis of our decisions in the implementation phase. Known standards, reference lists and ontologies (such as ICD-10-CM, animal taxonomy, cell line ontology…) were considered. The semantics of the data fields were clearly defined, enhancing the data quality of the stored cell lines. Therefore, we created an essential cell line dataset with defined data fields, useable for multiple cell line users.
根特生物资源中心是根特大学医院的中央医院综合生物样本库。我们的使命是通过收集、存储高质量生物样本并将其提供给研究人员,促进转化医学研究。我们的几个生物样本库合作伙伴存储了大量细胞系。由于细胞系在基础研究和临床前筛选阶段都非常重要,因此这些细胞系的良好注释、鉴定和质量对于转化医学科学至关重要。一个生物样本库信息管理系统(BIMS)被用作人体材料的样本和数据管理系统。样本通过使用基于BRISQ(提高研究质量的生物样本报告)和生物样本库数据共享最小信息(MIABIS)指南并补充SPREC(标准分析前编码)信息的定义数据集进行注释。然而,人体材料的定义数据集并不理想,无法捕获特定的细胞系数据。因此,我们着手开发一个合理化的细胞系数据集。通过比较在线细胞库(人类、动物和干细胞)的不同数据集,我们建立了一个包含156个数据字段的扩展细胞系数据集,并对其进行进一步分析,直到获得一个较小的数据集——54个数据字段的调查数据集。该调查数据集在我们的校园内分发给所有细胞系用户,以合理化数据集的字段及其潜在用途。对调查数据的分析表明,人类、动物和干细胞系在数据字段偏好上只有细微差异。因此,编制了一个由33个数据字段组成的人类、动物和干细胞系通用基本数据集。该基本数据集已准备好在我们的BIMS系统中实施。良好的临床数据管理实践构成了我们在实施阶段决策的基础。我们考虑了已知标准、参考列表和本体(如ICD-10-CM、动物分类学、细胞系本体等)。数据字段的语义被明确界定,提高了所存储细胞系的数据质量。因此,我们创建了一个具有定义数据字段的基本细胞系数据集,可供多个细胞系用户使用。