Suppr超能文献

开发一种分类器,以确定虚拟现实环境中导致晕动症的因素。

Development of a Classifier to Determine Factors Causing Cybersickness in Virtual Reality Environments.

机构信息

Multimedia Communications Lab, Technische Universitaet Darmstadt, Darmstadt, Germany.

HTW Saar, Saarbruecken University of Applied Sciences, Saarbrücken, Germany.

出版信息

Games Health J. 2019 Dec;8(6):439-444. doi: 10.1089/g4h.2019.0045. Epub 2019 Jul 11.

Abstract

The goal of this contribution is to develop a classifier able to determine if cybersickness (CS) has occurred after immersion in a virtual reality (VR) scenario, based on a combination of biosignals and game parameters. We collected electrocardiographic, electrooculographic, respiratory, and skin conductivity data from a total of 66 participants. In addition, we also captured relevant game parameters such as avatar linear and angular speed as well as acceleration, head movements, and on-screen collisions. The data were collected while the participants were in a 10-minute VR experience, which was developed in Unity. The experience forced rotation and lateral movements upon the participants to provoke CS. A baseline was captured during a first simple scenario. The data were then split in per-level, per-60-second, and per-30-second windows. Furthermore, participants filled a pre- and postimmersion simulator sickness questionnaire. Simulator sickness scores were then used as a reference for binary (CS vs. no CS) and ternary (no CS-mild CS-severe CS) classification patterns. Several classification methods (support vector machines, K-nearest neighbors, and neural networks) were tested. A maximum classification accuracy of 82% was achieved for binary classification and 56% for ternary classification. Given the sample size and the variety of movement patterns presented in the demonstration, we conclude that a combination of biosignals and game parameters suffice to determine the occurrence of CS. However, substantial further research is required to improve binary classification accuracy to adequate values for real-life scenarios and to determine better approaches to classify its severity.

摘要

本研究旨在开发一种分类器,以便根据生物信号和游戏参数组合,确定在虚拟现实 (VR) 场景中浸入后是否发生了晕动症 (CS)。我们从总共 66 名参与者那里收集了心电图、眼电图、呼吸和皮肤电导率数据。此外,我们还捕获了相关的游戏参数,如头像的线性和角速度以及加速度、头部运动和屏幕上的碰撞。参与者在 Unity 开发的 10 分钟 VR 体验中进行了数据采集。体验通过强制旋转和侧向运动来引发 CS。在第一个简单场景中捕获了基线。然后,将数据按级别、每 60 秒和每 30 秒的窗口进行分割。此外,参与者还填写了浸入前和浸入后模拟晕动病问卷。然后将模拟晕动病评分用作二元(CS 与非 CS)和三元(非 CS-轻度 CS-重度 CS)分类模式的参考。测试了几种分类方法(支持向量机、K-最近邻和神经网络)。对于二元分类,实现了 82%的最大分类准确率,对于三元分类,实现了 56%的最大分类准确率。鉴于样本量和演示中呈现的各种运动模式,我们得出结论,生物信号和游戏参数的组合足以确定 CS 的发生。然而,需要进行大量进一步的研究,以提高二元分类的准确性,使其达到实际场景的足够值,并确定更好的方法来对其严重程度进行分类。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验