Department of Health Policy and Management, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC.
The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth, Lebanon, NH.
Med Care. 2019 Aug;57(8):601-607. doi: 10.1097/MLR.0000000000001154.
To develop and validate a measure that estimates individual level poverty in Medicare administrative data that can be used in studies of Medicare claims.
A 2008 to 2013 Medicare Current Beneficiary Survey linked to 2008 to 2013 Medicare fee-for-service beneficiary summary file and census data.
We used the Medicare Current Beneficiary Survey to define individual level poverty status and linked to Medicare administrative data (N=38,053). We partitioned data into a measure derivation dataset and a validation dataset. In the derivation data, we used a logistic model to regress poverty status on measures of dual eligible status, part D low-income subsidy, and demographic and administrative data, and modeled with and without linked census and nursing home data. Each beneficiary receives a predicted poverty score from the model. Performance was evaluated in derivation and validation data and compared with other measures used in the literature. We present a measure for income-only poverty as well as one for income and asset poverty.
A score (predicted probability of income poverty) >0.5 yielded 58% sensitivity, 94% specificity, and 84% positive predictive value in the derivation data; our score yielded very similar results in the validation data. The model's c-statistic was 0.84. Our poverty score performed better than Medicaid enrollment, high zip code poverty, and zip code median income. The income and asset version performed similarly well.
A poverty score can be calculated using Medicare administrative data for use as a continuous or binary measure. This measure can improve researchers' ability to identify poverty in Medicare administrative data.
开发并验证一种可用于研究医疗保险索赔的医疗保险管理数据中个体贫困程度的衡量标准。
2008 年至 2013 年医疗保险当前受益人调查与 2008 年至 2013 年医疗保险按服务收费受益人的汇总文件和人口普查数据相关联。
我们使用医疗保险当前受益人调查来定义个体贫困状况,并与医疗保险管理数据(N=38053)相关联。我们将数据分为衡量标准推导数据集和验证数据集。在推导数据中,我们使用逻辑回归模型将贫困状况与双重资格状况、部分 D 低收入补贴以及人口统计和行政数据进行回归,并对是否链接人口普查和疗养院数据进行建模。每个受益人都会从模型中获得一个预测贫困评分。在推导和验证数据中评估了性能,并与文献中使用的其他衡量标准进行了比较。我们提出了一种仅用于收入贫困的衡量标准,以及一种用于收入和资产贫困的衡量标准。
在推导数据中,评分(收入贫困的预测概率)>0.5 的情况下,灵敏度为 58%,特异性为 94%,阳性预测值为 84%;我们的评分在验证数据中得出了非常相似的结果。该模型的 C 统计量为 0.84。我们的贫困评分优于医疗补助计划的参与、高邮政编码贫困率和邮政编码中位数收入。收入和资产版本的表现同样出色。
可以使用医疗保险管理数据计算贫困评分,用作连续或二进制衡量标准。该衡量标准可以提高研究人员在医疗保险管理数据中识别贫困的能力。