Suppr超能文献

PrediTALE:一种从定量数据中学习到的新型模型,为 TALE 靶向提供了新的视角。

PrediTALE: A novel model learned from quantitative data allows for new perspectives on TALE targeting.

机构信息

Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle, Germany.

Department of Plant Biotechnology, Leibniz Universität Hannover, Hannover, Germany.

出版信息

PLoS Comput Biol. 2019 Jul 11;15(7):e1007206. doi: 10.1371/journal.pcbi.1007206. eCollection 2019 Jul.

Abstract

Plant-pathogenic Xanthomonas bacteria secrete transcription activator-like effectors (TALEs) into host cells, where they act as transcriptional activators on plant target genes to support bacterial virulence. TALEs have a unique modular DNA-binding domain composed of tandem repeats. Two amino acids within each tandem repeat, termed repeat-variable diresidues, bind to contiguous nucleotides on the DNA sequence and determine target specificity. In this paper, we propose a novel approach for TALE target prediction to identify potential virulence targets. Our approach accounts for recent findings concerning TALE targeting, including frame-shift binding by repeats of aberrant lengths, and the flexible strand orientation of target boxes relative to the transcription start of the downstream target gene. The computational model can account for dependencies between adjacent RVD positions. Model parameters are learned from the wealth of quantitative data that have been generated over the last years. We benchmark the novel approach, termed PrediTALE, using RNA-seq data after Xanthomonas infection in rice, and find an overall improvement of prediction performance compared with previous approaches. Using PrediTALE, we are able to predict several novel putative virulence targets. However, we also observe that no target genes are predicted by any prediction tool for several TALEs, which we term orphan TALEs for this reason. We postulate that one explanation for orphan TALEs are incomplete gene annotations and, hence, propose to replace promoterome-wide by genome-wide scans for target boxes. We demonstrate that known targets from promoterome-wide scans may be recovered by genome-wide scans, whereas the latter, combined with RNA-seq data, are able to detect putative targets independent of existing gene annotations.

摘要

植物病原性黄单胞菌将转录激活子样效应物(TALEs)分泌到宿主细胞中,在宿主细胞中,TALEs 作为转录激活因子作用于植物靶基因以支持细菌的毒力。TALEs 具有独特的模块化 DNA 结合域,由串联重复组成。每个串联重复中的两个氨基酸,称为重复可变双残基,与 DNA 序列上的连续核苷酸结合,并决定靶标特异性。在本文中,我们提出了一种新的 TALE 靶标预测方法,以识别潜在的毒力靶标。我们的方法考虑了最近关于 TALE 靶向的发现,包括重复长度异常的框移结合,以及目标框相对于下游靶基因转录起始的灵活链取向。计算模型可以解释相邻 RVD 位置之间的依赖性。模型参数是从过去几年产生的大量定量数据中学习得到的。我们使用黄单胞菌感染水稻后的 RNA-seq 数据对新方法 PrediTALE 进行了基准测试,与以前的方法相比,发现预测性能得到了整体提高。使用 PrediTALE,我们能够预测几个新的潜在毒力靶标。然而,我们还观察到,由于缺乏基因注释,几个 TALEs 没有被任何预测工具预测到,我们因此将这些 TALEs 称为孤儿 TALEs。我们推测,孤儿 TALEs 的一个解释是基因注释不完整,因此我们建议用全基因组扫描来替代启动子组扫描寻找目标框。我们证明,从启动子组扫描中发现的已知靶标可以通过全基因组扫描来恢复,而后者与 RNA-seq 数据结合,能够检测到与现有基因注释无关的潜在靶标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7de7/6650089/8f2cbda36b8e/pcbi.1007206.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验