Suppr超能文献

半自动化数据标注在普适医疗中的活动识别应用。

Semi-Automated Data Labeling for Activity Recognition in Pervasive Healthcare.

机构信息

CICESE (Centro de Investigacion Cientifica y de Investigacion Superior de Ensenada), Ensenada 22860, Mexico.

IPN (Instituto Politecnico Nacional), Tijuana 22435, Mexico.

出版信息

Sensors (Basel). 2019 Jul 10;19(14):3035. doi: 10.3390/s19143035.

Abstract

Activity recognition, a key component in pervasive healthcare monitoring, relies on classification algorithms that require labeled data of individuals performing the activity of interest to train accurate models. Labeling data can be performed in a lab setting where an individual enacts the activity under controlled conditions. The ubiquity of mobile and wearable sensors allows the collection of large datasets from individuals performing activities in naturalistic conditions. Gathering accurate data labels for activity recognition is typically an expensive and time-consuming process. In this paper we present two novel approaches for semi-automated online data labeling performed by the individual executing the activity of interest. The approaches have been designed to address two of the limitations of self-annotation: (i) The burden on the user performing and annotating the activity, and (ii) the lack of accuracy due to the user labeling the data minutes or hours after the completion of an activity. The first approach is based on the recognition of subtle finger gestures performed in response to a data-labeling query. The second approach focuses on labeling activities that have an auditory manifestation and uses a classifier to have an initial estimation of the activity, and a conversational agent to ask the participant for clarification or for additional data. Both approaches are described, evaluated in controlled experiments to assess their feasibility and their advantages and limitations are discussed. Results show that while both studies have limitations, they achieve 80% to 90% precision.

摘要

活动识别是普及医疗保健监测的关键组成部分,它依赖于分类算法,这些算法需要对感兴趣的活动的个体进行标记数据的训练,以建立准确的模型。可以在实验室环境中对数据进行标记,在实验室环境中,个体可以在受控条件下执行活动。移动和可穿戴传感器的普及允许从在自然条件下执行活动的个体中收集大量数据集。为活动识别收集准确的数据标签通常是一个昂贵且耗时的过程。在本文中,我们提出了两种新颖的半自动化在线数据标记方法,由执行感兴趣活动的个体执行。这些方法旨在解决自我注释的两个限制:(i)执行和注释活动的用户的负担,以及(ii)由于用户在活动完成几分钟或几小时后标记数据,因此缺乏准确性。第一种方法基于识别响应数据标记查询而执行的微妙手指手势。第二种方法专注于标记具有听觉表现的活动,并使用分类器对活动进行初始估计,以及使用对话代理向参与者询问澄清或附加数据。这两种方法都进行了描述,并在受控实验中进行了评估,以评估其可行性,讨论了它们的优缺点。结果表明,虽然这两项研究都有其局限性,但它们都达到了 80%到 90%的精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75f9/6678972/4675dcb22816/sensors-19-03035-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验