Suppr超能文献

基于机器学习的内陆水域非常规船舶自动分类

Automatic Classification Using Machine Learning for Non-Conventional Vessels on Inland Waters.

作者信息

Wlodarczyk-Sielicka Marta, Polap Dawid

机构信息

Institute of Geoinformatics, Department of Navigation, Maritime University of Szczecin, Waly Chrobrego 1-2, 70-500 Szczecin, Poland.

Marine Technology Ltd. ul. Roszczynialskiego 4/6, 81-521 Gdynia, Poland.

出版信息

Sensors (Basel). 2019 Jul 10;19(14):3051. doi: 10.3390/s19143051.

Abstract

The prevalent methods for monitoring ships are based on automatic identification and radar systems. This applies mainly to large vessels. Additional sensors that are used include video cameras with different resolutions. Such systems feature cameras that capture images and software that analyze the selected video frames. The analysis involves the detection of a ship and the extraction of features to identify it. This article proposes a technique to detect and categorize ships through image processing methods that use convolutional neural networks. Tests to verify the proposed method were carried out on a database containing 200 images of four classes of ships. The advantages and disadvantages of implementing the proposed method are also discussed in light of the results. The system is designed to use multiple existing video streams to identify passing ships on inland waters, especially non-conventional vessels.

摘要

监测船舶的常用方法基于自动识别和雷达系统。这主要适用于大型船舶。使用的其他传感器包括不同分辨率的摄像机。此类系统配备有捕获图像的摄像机和分析所选视频帧的软件。分析包括检测船舶并提取特征以识别它。本文提出了一种通过使用卷积神经网络的图像处理方法来检测和分类船舶的技术。在一个包含四类船舶200张图像的数据库上进行了验证该方法的测试。还根据结果讨论了实施该方法的优缺点。该系统旨在利用多个现有视频流来识别内陆水域中过往的船舶,尤其是非常规船舶。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9b0/6678768/0d3f08c02a4b/sensors-19-03051-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验