Suppr超能文献

基于自动船体铭文识别的船舶识别。

Vessel identification based on automatic hull inscriptions recognition.

机构信息

Department of Navigation, Maritime University of Szczecin, Szczecin, Poland.

Department of Computer Science, West Pomeranian University of Technology, Szczecin, Poland.

出版信息

PLoS One. 2022 Jul 19;17(7):e0270575. doi: 10.1371/journal.pone.0270575. eCollection 2022.

Abstract

The identification of ships plays a crucial role in security and managing vessel traffic for ports and onshore facilities. Existing video monitoring systems help visually identify a vessel where other systems are not present or sufficient. Readable vessel plates and hull inscriptions of detected ships in the video stream allow using text location and recognition methods to obtain ships' identification names or numbers. The obtained information can be then matched with available ship registers. The automation of the process has met many challenges related to the often-low quality of available video streams, heterogeneous regulations on the marking of ships, and the specifics of natural scene text recognition, such as quickly alternating imaging conditions or the interference of the background. The main contribution of this research is a method that can identify any type of vessel in an image that has visible inscriptions (name, registration number) placed on the hull and must be registered in a public registry. The proposed method works with low-quality images with inscriptions placed under different angles and different, readable sizes. Our method recognised 91% of vessels from our test dataset. Obtained identification times have not exceeded 1s. The quality and efficiency of the proposed solution indicate that it is suitable for practical implementation in onshore monitoring systems.

摘要

船舶识别在港口和岸上设施的安全和船舶交通管理中起着至关重要的作用。现有的视频监控系统有助于在其他系统不存在或不足够的情况下对船舶进行视觉识别。在视频流中检测到的船舶的可读船板和船体铭文允许使用文本定位和识别方法来获取船舶的识别名称或号码。然后,可以将获得的信息与可用的船舶登记册进行匹配。该过程的自动化遇到了许多挑战,这些挑战与可用视频流的质量往往较低、船舶标记的规定不统一以及自然场景文本识别的特殊性有关,例如成像条件的快速交替或背景干扰。本研究的主要贡献是一种方法,可以识别图像中任何类型的船舶,只要该船舶的船体上有可见的铭文(名称、注册号),并且必须在公共登记册中进行登记。所提出的方法适用于具有不同角度和不同可读尺寸的铭文的低质量图像。我们的方法识别了我们测试数据集的 91%的船舶。识别时间没有超过 1 秒。所提出解决方案的质量和效率表明,它适用于在岸上监控系统中的实际实施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9993/9295957/a85acca8ffd8/pone.0270575.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验