Suppr超能文献

高频带时间动态响应抓握力任务。

High-frequency band temporal dynamics in response to a grasp force task.

机构信息

UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands.

出版信息

J Neural Eng. 2019 Aug 6;16(5):056009. doi: 10.1088/1741-2552/ab3189.

Abstract

OBJECTIVE

Brain-computer interfaces (BCIs) are being developed to restore reach and grasping movements of paralyzed individuals. Recent studies have shown that the kinetics of grasping movement, such as grasp force, can be successfully decoded from electrocorticography (ECoG) signals, and that the high-frequency band (HFB) power changes provide discriminative information that contribute to an accurate decoding of grasp force profiles. However, as the models used in these studies contained simultaneous information from multiple spectral features over multiple areas in the brain, it remains unclear what parameters of movement and force are encoded by the HFB signals and how these are represented temporally and spatially in the SMC.

APPROACH

To investigate this, and to gain insight in the temporal dynamics of the HFB during grasping, we continuously modelled the ECoG HFB response recorded from nine individuals with epilepsy temporarily implanted with ECoG grids, who performed three different grasp force tasks.

MAIN RESULTS

We show that a model based on the force onset and offset consistently provides a better fit to the HFB power responses when compared with a model based on the force magnitude, irrespective of electrode location.

SIGNIFICANCE

Our results suggest that HFB power, although potentially useful for continuous decoding, is more closely related to the changes in movement. This finding may potentially contribute to the more natural decoding of grasping movement in neural prosthetics.

摘要

目的

脑机接口(BCI)的开发旨在恢复瘫痪个体的伸手和抓握运动能力。最近的研究表明,抓握运动的动力学,如抓握力,可以成功地从脑电(ECoG)信号中解码出来,并且高频带(HFB)功率变化提供了有区别的信息,有助于准确解码抓握力曲线。然而,由于这些研究中使用的模型包含来自大脑中多个区域的多个光谱特征的同时信息,因此尚不清楚 HFB 信号编码了哪些运动和力参数,以及这些参数在 SMC 中是如何在时间和空间上表示的。

方法

为了研究这一点,并深入了解抓握过程中 HFB 的时间动态,我们连续对 9 名患有癫痫症的个体进行建模,这些个体暂时植入了 ECoG 网格,并执行了三种不同的抓握力任务。

主要结果

我们发现,与基于力大小的模型相比,基于力起始和结束的模型始终能更好地拟合 HFB 功率响应,无论电极位置如何。

意义

我们的结果表明,尽管 HFB 功率可能对连续解码有用,但它与运动的变化更为密切相关。这一发现可能有助于神经假体更自然地解码抓握运动。

相似文献

1
High-frequency band temporal dynamics in response to a grasp force task.
J Neural Eng. 2019 Aug 6;16(5):056009. doi: 10.1088/1741-2552/ab3189.
2
Decoding grasp force profile from electrocorticography signals in non-human primate sensorimotor cortex.
Neurosci Res. 2014 Jun;83:1-7. doi: 10.1016/j.neures.2014.03.010. Epub 2014 Apr 13.
3
Continuous decoding of human grasp kinematics using epidural and subdural signals.
J Neural Eng. 2017 Feb;14(1):016005. doi: 10.1088/1741-2560/14/1/016005. Epub 2016 Nov 30.
4
Temporal Dynamics and Response Modulation across the Human Visual System in a Spatial Attention Task: An ECoG Study.
J Neurosci. 2019 Jan 9;39(2):333-352. doi: 10.1523/JNEUROSCI.1889-18.2018. Epub 2018 Nov 20.
5
Power Modulations of ECoG Alpha/Beta and Gamma Bands Correlate With Time-Derivative of Force During Hand Grasp.
Front Neurosci. 2020 Feb 14;14:100. doi: 10.3389/fnins.2020.00100. eCollection 2020.
6
Size of the spatial correlation between ECoG and fMRI activity.
Neuroimage. 2021 Nov 15;242:118459. doi: 10.1016/j.neuroimage.2021.118459. Epub 2021 Aug 6.
7
Using transient, effector-specific neural responses to gate decoding for brain-computer interfaces.
J Neural Eng. 2025 Feb 11;22(1):016036. doi: 10.1088/1741-2552/adaa1f.
8
Comparison of decoding resolution of standard and high-density electrocorticogram electrodes.
J Neural Eng. 2016 Apr;13(2):026016. doi: 10.1088/1741-2560/13/2/026016. Epub 2016 Feb 9.
9
Characterization and Decoding the Spatial Patterns of Hand Extension/Flexion using High-Density ECoG.
IEEE Trans Neural Syst Rehabil Eng. 2017 Apr;25(4):370-379. doi: 10.1109/TNSRE.2016.2647255. Epub 2017 Jan 4.
10
Decoding natural grasp types from human ECoG.
Neuroimage. 2012 Jan 2;59(1):248-60. doi: 10.1016/j.neuroimage.2011.06.084. Epub 2011 Jul 8.

引用本文的文献

1
Behavioral and Neural Variability of Naturalistic Arm Movements.
eNeuro. 2021 Jun 22;8(3). doi: 10.1523/ENEURO.0007-21.2021. Print 2021 May-Jun.
3
The Representation of Finger Movement and Force in Human Motor and Premotor Cortices.
eNeuro. 2020 Aug 17;7(4). doi: 10.1523/ENEURO.0063-20.2020. Print 2020 Jul/Aug.

本文引用的文献

1
Encoding of kinetic and kinematic movement parameters in the sensorimotor cortex: A Brain-Computer Interface perspective.
Eur J Neurosci. 2019 Sep;50(5):2755-2772. doi: 10.1111/ejn.14342. Epub 2019 Jan 30.
2
Spatial-Temporal Dynamics of the Sensorimotor Cortex: Sustained and Transient Activity.
IEEE Trans Neural Syst Rehabil Eng. 2018 May;26(5):1084-1092. doi: 10.1109/TNSRE.2018.2821058.
3
Stable long-term BCI-enabled communication in ALS and locked-in syndrome using LFP signals.
J Neurophysiol. 2018 Jul 1;120(1):343-360. doi: 10.1152/jn.00493.2017. Epub 2018 Apr 25.
4
Human Sensorimotor Cortex Control of Directly Measured Vocal Tract Movements during Vowel Production.
J Neurosci. 2018 Mar 21;38(12):2955-2966. doi: 10.1523/JNEUROSCI.2382-17.2018. Epub 2018 Feb 8.
5
ALICE: A tool for automatic localization of intra-cranial electrodes for clinical and high-density grids.
J Neurosci Methods. 2018 May 1;301:43-51. doi: 10.1016/j.jneumeth.2017.10.022. Epub 2017 Nov 1.
6
Decoding spoken phonemes from sensorimotor cortex with high-density ECoG grids.
Neuroimage. 2018 Oct 15;180(Pt A):301-311. doi: 10.1016/j.neuroimage.2017.10.011. Epub 2017 Oct 7.
8
Fully Implanted Brain-Computer Interface in a Locked-In Patient with ALS.
N Engl J Med. 2016 Nov 24;375(21):2060-2066. doi: 10.1056/NEJMoa1608085. Epub 2016 Nov 12.
9
Decoding hand gestures from primary somatosensory cortex using high-density ECoG.
Neuroimage. 2017 Feb 15;147:130-142. doi: 10.1016/j.neuroimage.2016.12.004. Epub 2016 Dec 5.
10
Continuous decoding of human grasp kinematics using epidural and subdural signals.
J Neural Eng. 2017 Feb;14(1):016005. doi: 10.1088/1741-2560/14/1/016005. Epub 2016 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验