Suppr超能文献

标准与高密度皮层脑电图电极解码分辨率的比较

Comparison of decoding resolution of standard and high-density electrocorticogram electrodes.

作者信息

Wang Po T, King Christine E, McCrimmon Colin M, Lin Jack J, Sazgar Mona, Hsu Frank P K, Shaw Susan J, Millet David E, Chui Luis A, Liu Charles Y, Do An H, Nenadic Zoran

机构信息

Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA.

出版信息

J Neural Eng. 2016 Apr;13(2):026016. doi: 10.1088/1741-2560/13/2/026016. Epub 2016 Feb 9.

Abstract

OBJECTIVE

Electrocorticography (ECoG)-based brain-computer interface (BCI) is a promising platform for controlling arm prostheses. To restore functional independence, a BCI must be able to control arm prostheses along at least six degrees-of-freedoms (DOFs). Prior studies suggest that standard ECoG grids may be insufficient to decode multi-DOF arm movements. This study compared the ability of standard and high-density (HD) ECoG grids to decode the presence/absence of six elementary arm movements and the type of movement performed.

APPROACH

Three subjects implanted with standard grids (4 mm diameter, 10 mm spacing) and three with HD grids (2 mm diameter, 4 mm spacing) had ECoG signals recorded while performing the following movements: (1) pincer grasp/release, (2) wrist flexion/extension, (3) pronation/supination, (4) elbow flexion/extension, (5) shoulder internal/external rotation, and (6) shoulder forward flexion/extension. Data from the primary motor cortex were used to train a state decoder to detect the presence/absence of movement, and a six-class decoder to distinguish between these movements.

MAIN RESULTS

The average performances of the state decoders trained on HD ECoG data were superior (p = 3.05 × 10(-5)) to those of their standard grid counterparts across all combinations of the μ, β, low-γ, and high-γ frequency bands. The average best decoding error for HD grids was 2.6%, compared to 8.5% of standard grids (chance 50%). The movement decoders trained on HD ECoG data were superior (p = 3.05 × 10(-5)) to those based on standard ECoG across all band combinations. The average best decoding errors of 11.9% and 33.1% were obtained for HD and standard grids, respectively (chance error 83.3%). These improvements can be attributed to higher electrode density and signal quality of HD grids.

SIGNIFICANCE

Commonly used ECoG grids are inadequate for multi-DOF BCI arm prostheses. The performance gains by HD grids may eventually lead to independence-restoring BCI arm prosthesis.

摘要

目的

基于皮层脑电图(ECoG)的脑机接口(BCI)是控制手臂假肢的一个有前景的平台。为恢复功能独立性,一个BCI必须能够沿着至少六个自由度(DOF)来控制手臂假肢。先前的研究表明,标准的ECoG网格可能不足以解码多自由度的手臂运动。本研究比较了标准和高密度(HD)ECoG网格解码六种基本手臂运动的有无以及所执行运动类型的能力。

方法

三名植入标准网格(直径4毫米,间距10毫米)和三名植入HD网格(直径2毫米,间距4毫米)的受试者在执行以下运动时记录ECoG信号:(1)钳形抓握/松开,(2)手腕屈伸,(3)旋前/旋后,(4)肘部屈伸,(5)肩部内/外旋转,以及(6)肩部前屈/后伸。来自初级运动皮层的数据用于训练一个状态解码器以检测运动的有无,以及一个六类解码器以区分这些运动。

主要结果

在所有μ、β、低γ和高γ频段组合中,基于HD ECoG数据训练的状态解码器的平均性能优于(p = 3.05×10⁻⁵)其标准网格对应物。HD网格的平均最佳解码误差为2.6%,而标准网格为8.5%(机遇率为50%)。基于HD ECoG数据训练的运动解码器在所有频段组合中均优于(p = 3.05×10⁻⁵)基于标准ECoG的解码器。HD和标准网格的平均最佳解码误差分别为11.9%和33.1%(机遇误差为83.3%)。这些改进可归因于HD网格更高的电极密度和信号质量。

意义

常用的ECoG网格不足以用于多自由度BCI手臂假肢。HD网格带来的性能提升最终可能促成恢复独立性的BCI手臂假肢。

相似文献

1
Comparison of decoding resolution of standard and high-density electrocorticogram electrodes.
J Neural Eng. 2016 Apr;13(2):026016. doi: 10.1088/1741-2560/13/2/026016. Epub 2016 Feb 9.
2
Electrocorticogram encoding of upper extremity movement duration.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:1243-6. doi: 10.1109/EMBC.2014.6943822.
4
Decoding hand gestures from primary somatosensory cortex using high-density ECoG.
Neuroimage. 2017 Feb 15;147:130-142. doi: 10.1016/j.neuroimage.2016.12.004. Epub 2016 Dec 5.
5
Decoding three-dimensional reaching movements using electrocorticographic signals in humans.
J Neural Eng. 2016 Apr;13(2):026021. doi: 10.1088/1741-2560/13/2/026021. Epub 2016 Feb 23.
6
GridLoc: An automatic and unsupervised localization method for high-density ECoG grids.
Neuroimage. 2018 Oct 1;179:225-234. doi: 10.1016/j.neuroimage.2018.06.050. Epub 2018 Jun 18.
7
Multi-scale analysis of neural activity in humans: Implications for micro-scale electrocorticography.
Clin Neurophysiol. 2016 Jan;127(1):591-601. doi: 10.1016/j.clinph.2015.06.002. Epub 2015 Jun 11.
8
Sensitivity and specificity of upper extremity movements decoded from electrocorticogram.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5618-21. doi: 10.1109/EMBC.2013.6610824.
9
Characterization and Decoding the Spatial Patterns of Hand Extension/Flexion using High-Density ECoG.
IEEE Trans Neural Syst Rehabil Eng. 2017 Apr;25(4):370-379. doi: 10.1109/TNSRE.2016.2647255. Epub 2017 Jan 4.
10
Real-time control of a prosthetic hand using human electrocorticography signals.
J Neurosurg. 2011 Jun;114(6):1715-22. doi: 10.3171/2011.1.JNS101421. Epub 2011 Feb 11.

引用本文的文献

1
3
A Soft, High-Density Neuroelectronic Array.
Npj Flex Electron. 2023;7(1). doi: 10.1038/s41528-023-00271-2. Epub 2023 Aug 22.
4
A novel method for dynamically altering the surface area of intracranial EEG electrodes.
J Neural Eng. 2023 Mar 7;20(2):026002. doi: 10.1088/1741-2552/acb79f.
6
Multiple states in ongoing neural activity in the rat visual cortex.
PLoS One. 2021 Aug 26;16(8):e0256791. doi: 10.1371/journal.pone.0256791. eCollection 2021.
8
Summary of over Fifty Years with Brain-Computer Interfaces-A Review.
Brain Sci. 2021 Jan 3;11(1):43. doi: 10.3390/brainsci11010043.
10
The Representation of Finger Movement and Force in Human Motor and Premotor Cortices.
eNeuro. 2020 Aug 17;7(4). doi: 10.1523/ENEURO.0063-20.2020. Print 2020 Jul/Aug.

本文引用的文献

1
Electrocorticogram encoding of upper extremity movement duration.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:1243-6. doi: 10.1109/EMBC.2014.6943822.
2
Extracting kinetic information from human motor cortical signals.
Neuroimage. 2014 Nov 1;101:695-703. doi: 10.1016/j.neuroimage.2014.07.049. Epub 2014 Aug 2.
3
Sensitivity and specificity of upper extremity movements decoded from electrocorticogram.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5618-21. doi: 10.1109/EMBC.2013.6610824.
4
An electrocorticographic brain interface in an individual with tetraplegia.
PLoS One. 2013;8(2):e55344. doi: 10.1371/journal.pone.0055344. Epub 2013 Feb 6.
5
Electrocorticographic (ECoG) correlates of human arm movements.
Exp Brain Res. 2012 Nov;223(1):1-10. doi: 10.1007/s00221-012-3226-1. Epub 2012 Sep 22.
6
Decoding onset and direction of movements using Electrocorticographic (ECoG) signals in humans.
Front Neuroeng. 2012 Aug 8;5:15. doi: 10.3389/fneng.2012.00015. eCollection 2012.
7
Decoding Finger Flexion from Band-Specific ECoG Signals in Humans.
Front Neurosci. 2012 Jun 28;6:91. doi: 10.3389/fnins.2012.00091. eCollection 2012.
8
Prior knowledge improves decoding of finger flexion from electrocorticographic signals.
Front Neurosci. 2011 Nov 28;5:127. doi: 10.3389/fnins.2011.00127. eCollection 2011.
9
Electrocorticographic control of a prosthetic arm in paralyzed patients.
Ann Neurol. 2012 Mar;71(3):353-61. doi: 10.1002/ana.22613. Epub 2011 Nov 2.
10
A durable, low-cost electrogoniometer for dynamic measurement of joint trajectories.
Med Eng Phys. 2011 Jun;33(5):546-52. doi: 10.1016/j.medengphy.2010.12.008. Epub 2011 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验