Suppr超能文献

直接观察受限诱导扩散电泳。

Direct observation of confinement-induced diffusophoresis.

机构信息

Department of Physics, North Carolina State University, Raleigh, NC 27695, United States of America.

出版信息

Nanotechnology. 2019 Oct 11;30(41):41LT01. doi: 10.1088/1361-6528/ab31f7. Epub 2019 Jul 13.

Abstract

Nanofluidic devices have channel dimensions which come to within one order of magnitude of the Debye length of common aqueous solutions. Conventionally, external driving is used to create concentration polarization of ions and biomolecules in nanofluidic devices. Here we show that long-range ionic strength gradients intrinsic to all nanofluidic devices, even at equilibrium, also drive a drift of macromolecules. To demonstrate the effect, we confine long DNA to straight nanochannels of constant, rectangular cross-section (100 × 100 nm) which are connected to large microfluidic reservoirs. The motion of DNA is observed in absence of any driving. We find that at low ionic strengths, molecules in nanochannels migrate toward the nano-micro interface, while they are undergoing purely diffusive motion in high salt. Using numerical models, we demonstrate that the motion is consistent with the ionic strength gradient at the micro-nano interface even at equilibrium, and that the dominant cause of the drift is diffusophoresis.

摘要

纳米流控装置的通道尺寸与常见水溶液的德拜长度相差一个数量级。传统上,外部驱动力用于在纳米流控装置中产生离子和生物分子的浓度极化。在这里,我们表明,即使在平衡状态下,所有纳米流控装置固有的长程离子强度梯度也会导致大分子的漂移。为了证明这一效果,我们将长 DNA 限制在具有恒定矩形横截面(100×100nm)的直纳米通道中,这些通道与大型微流控储液器相连。在没有任何驱动力的情况下观察 DNA 的运动。我们发现,在低盐度下,纳米通道中的分子朝着纳米-微界面迁移,而在高盐度下,它们处于纯扩散运动状态。使用数值模型,我们证明即使在平衡状态下,分子的运动也与微纳米界面处的离子强度梯度一致,并且漂移的主要原因是扩散电泳。

相似文献

1
Direct observation of confinement-induced diffusophoresis.
Nanotechnology. 2019 Oct 11;30(41):41LT01. doi: 10.1088/1361-6528/ab31f7. Epub 2019 Jul 13.
2
Tunable non-equilibrium gating of flexible DNA nanochannels in response to transport flux.
Nat Nanotechnol. 2007 Jun;2(6):366-71. doi: 10.1038/nnano.2007.148. Epub 2007 May 27.
3
Power generation by pressure-driven transport of ions in nanofluidic channels.
Nano Lett. 2007 Apr;7(4):1022-5. doi: 10.1021/nl070194h. Epub 2007 Mar 13.
5
Nanofluidic ionic diodes. Comparison of analytical and numerical solutions.
ACS Nano. 2008 Aug;2(8):1589-602. doi: 10.1021/nn800306u.
6
Separation behavior of short single- and double-stranded DNA in 1 micron and 100 nm glass channels.
Electrophoresis. 2014 Feb;35(2-3):412-8. doi: 10.1002/elps.201300177. Epub 2013 Oct 2.
7
Compression and free expansion of single DNA molecules in nanochannels.
Phys Rev Lett. 2005 Dec 31;95(26):268101. doi: 10.1103/PhysRevLett.95.268101. Epub 2005 Dec 21.
9
Ionic size dependent electroosmosis in ion-selective microchannels and nanochannels.
Electrophoresis. 2013 Aug;34(15):2193-8. doi: 10.1002/elps.201300094. Epub 2013 Jul 8.
10
Scalable integration of nano-, and microfluidics with hybrid two-photon lithography.
Microsyst Nanoeng. 2019 Sep 9;5:40. doi: 10.1038/s41378-019-0080-3. eCollection 2019.

本文引用的文献

1
Motor-like DNA motion due to an ATP-hydrolyzing protein under nanoconfinement.
Sci Rep. 2018 Jul 3;8(1):10036. doi: 10.1038/s41598-018-28278-0.
3
One-Parameter Scaling Theory for DNA Extension in a Nanochannel.
Phys Rev Lett. 2017 Dec 29;119(26):268102. doi: 10.1103/PhysRevLett.119.268102. Epub 2017 Dec 28.
4
Fabrication and characterization of nanopore-interfaced nanochannel devices.
Nanotechnology. 2015 Nov 13;26(45):455301. doi: 10.1088/0957-4484/26/45/455301. Epub 2015 Oct 16.
6
Electrokinetic DNA transport in 20 nm-high nanoslits: evidence for movement through a wall-adsorbed.
Electrophoresis. 2011 Sep;32(18):2402-9. doi: 10.1002/elps.201100278. Epub 2011 Aug 26.
7
Electrokinetic transport through nanochannels.
Electrophoresis. 2011 Jun;32(11):1259-67. doi: 10.1002/elps.201000564. Epub 2011 May 3.
8
Colloidal motility and pattern formation under rectified diffusiophoresis.
Phys Rev Lett. 2010 Apr 2;104(13):138302. doi: 10.1103/PhysRevLett.104.138302. Epub 2010 Apr 1.
10
Confinement spectroscopy: probing single DNA molecules with tapered nanochannels.
Nano Lett. 2009 Apr;9(4):1382-5. doi: 10.1021/nl803030e.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验