Department of Radiology, Stanford University, Stanford, CA, United States of America.
Phys Med Biol. 2018 Jun 7;63(11):115011. doi: 10.1088/1361-6560/aac504.
Commercially available clinical positron emission tomography (PET) detectors employ scintillation crystals that are long ([Formula: see text]20 mm length) and narrow (4-5 mm width) optically coupled on their narrow end to a photosensor. The aspect ratio of this traditional crystal rod configuration and 511 keV photon attenuation properties yield significant variances in scintillation light collection efficiency and transit time to the photodetector, due to variations in the 511 keV photon interaction depth in the crystal. These variances contribute significant to coincidence time resolution degradation. If instead, crystals are coupled to a photosensor on their long side, near-complete light collection efficiency can be achieved, and scintillation photon transit time jitter is reduced. In this work, we compare the achievable coincidence time resolution (CTR) of LGSO:Ce(0.025 mol%) crystals 3-20 mm in length when optically coupled to silicon photomultipliers (SiPMs) on either their short end or long side face. In this 'side readout' configuration, a CTR of 102 ± 2 ps FWHM was measured with [Formula: see text] mm crystals coupled to rows of [Formula: see text] mm SensL-J SiPMs using leading edge time pickoff and a single timing channel. This is in contrast to a CTR of 137 ± 3 ps FWHM when the same crystals were coupled to single [Formula: see text] mm SiPMs on their narrow ends. We further study the statistical limit on CTR using side readout via the Cramér-Rao lower bound (CRLB), with consideration given to ongoing work to further improve photosensor technologies and exploit fast phenomena to ultimately achieve 10 ps FWHM CTR. Potential design aspects of scalable front-end signal processing readout electronics using this side readout configuration are discussed. Altogether, we demonstrate that the side readout configuration offers an immediate solution for 100 ps CTR clinical PET detectors and mitigates factors prohibiting future efforts to achieve 10 ps FWHM CTR.
市售的临床正电子发射断层扫描(PET)探测器采用闪烁晶体,这些晶体长度较长([Formula: see text]20 毫米),宽度较窄(4-5 毫米),在窄端与光电传感器光学耦合。这种传统的晶体棒结构的纵横比和 511keV 光子衰减特性导致闪烁光收集效率和到达光电探测器的传输时间存在显著差异,这是由于晶体中 511keV 光子相互作用深度的变化所致。这些差异对符合时间分辨率的降低有很大影响。如果晶体在长边与光电传感器耦合,就可以实现近乎完全的光收集效率,并降低闪烁光子传输时间抖动。在这项工作中,我们比较了长度为 3-20 毫米的 LGSO:Ce(0.025 摩尔%)晶体在短端或长侧面与硅光电倍增管(SiPM)光学耦合时的可实现符合时间分辨率(CTR)。在这种“侧面读取”配置中,使用前沿时间选通和单个定时通道,将[Formula: see text]mm 晶体与[Formula: see text]mm SensL-J SiPM 成排耦合,测量到的 CTR 为 102 ± 2 ps FWHM。相比之下,当相同的晶体在其窄端与单个[Formula: see text]mm SiPM 耦合时,测得的 CTR 为 137 ± 3 ps FWHM。我们进一步通过考虑正在进行的工作来研究使用侧面读取的 CTR 的统计限制,这些工作旨在进一步改进光电传感器技术并利用快速现象来最终实现 10 ps FWHM CTR。还讨论了使用这种侧面读取配置的可扩展前端信号处理读出电子设备的潜在设计方面。总之,我们证明了侧面读取配置为实现 100 ps CTR 临床 PET 探测器提供了一个直接的解决方案,并缓解了未来实现 10 ps FWHM CTR 的障碍因素。