Suppr超能文献

评估一种临床 TOF-PET 探测器设计,该设计可实现 ⩽100 ps 的符合时间分辨率。

Evaluation of a clinical TOF-PET detector design that achieves ⩽100 ps coincidence time resolution.

机构信息

Department of Radiology, Stanford University, Stanford, CA, United States of America.

出版信息

Phys Med Biol. 2018 Jun 7;63(11):115011. doi: 10.1088/1361-6560/aac504.

Abstract

Commercially available clinical positron emission tomography (PET) detectors employ scintillation crystals that are long ([Formula: see text]20 mm length) and narrow (4-5 mm width) optically coupled on their narrow end to a photosensor. The aspect ratio of this traditional crystal rod configuration and 511 keV photon attenuation properties yield significant variances in scintillation light collection efficiency and transit time to the photodetector, due to variations in the 511 keV photon interaction depth in the crystal. These variances contribute significant to coincidence time resolution degradation. If instead, crystals are coupled to a photosensor on their long side, near-complete light collection efficiency can be achieved, and scintillation photon transit time jitter is reduced. In this work, we compare the achievable coincidence time resolution (CTR) of LGSO:Ce(0.025 mol%) crystals 3-20 mm in length when optically coupled to silicon photomultipliers (SiPMs) on either their short end or long side face. In this 'side readout' configuration, a CTR of 102  ±  2 ps FWHM was measured with [Formula: see text] mm crystals coupled to rows of [Formula: see text] mm SensL-J SiPMs using leading edge time pickoff and a single timing channel. This is in contrast to a CTR of 137  ±  3 ps FWHM when the same crystals were coupled to single [Formula: see text] mm SiPMs on their narrow ends. We further study the statistical limit on CTR using side readout via the Cramér-Rao lower bound (CRLB), with consideration given to ongoing work to further improve photosensor technologies and exploit fast phenomena to ultimately achieve 10 ps FWHM CTR. Potential design aspects of scalable front-end signal processing readout electronics using this side readout configuration are discussed. Altogether, we demonstrate that the side readout configuration offers an immediate solution for 100 ps CTR clinical PET detectors and mitigates factors prohibiting future efforts to achieve 10 ps FWHM CTR.

摘要

市售的临床正电子发射断层扫描(PET)探测器采用闪烁晶体,这些晶体长度较长([Formula: see text]20 毫米),宽度较窄(4-5 毫米),在窄端与光电传感器光学耦合。这种传统的晶体棒结构的纵横比和 511keV 光子衰减特性导致闪烁光收集效率和到达光电探测器的传输时间存在显著差异,这是由于晶体中 511keV 光子相互作用深度的变化所致。这些差异对符合时间分辨率的降低有很大影响。如果晶体在长边与光电传感器耦合,就可以实现近乎完全的光收集效率,并降低闪烁光子传输时间抖动。在这项工作中,我们比较了长度为 3-20 毫米的 LGSO:Ce(0.025 摩尔%)晶体在短端或长侧面与硅光电倍增管(SiPM)光学耦合时的可实现符合时间分辨率(CTR)。在这种“侧面读取”配置中,使用前沿时间选通和单个定时通道,将[Formula: see text]mm 晶体与[Formula: see text]mm SensL-J SiPM 成排耦合,测量到的 CTR 为 102  ±  2 ps FWHM。相比之下,当相同的晶体在其窄端与单个[Formula: see text]mm SiPM 耦合时,测得的 CTR 为 137  ±  3 ps FWHM。我们进一步通过考虑正在进行的工作来研究使用侧面读取的 CTR 的统计限制,这些工作旨在进一步改进光电传感器技术并利用快速现象来最终实现 10 ps FWHM CTR。还讨论了使用这种侧面读取配置的可扩展前端信号处理读出电子设备的潜在设计方面。总之,我们证明了侧面读取配置为实现 100 ps CTR 临床 PET 探测器提供了一个直接的解决方案,并缓解了未来实现 10 ps FWHM CTR 的障碍因素。

相似文献

1
Evaluation of a clinical TOF-PET detector design that achieves ⩽100 ps coincidence time resolution.
Phys Med Biol. 2018 Jun 7;63(11):115011. doi: 10.1088/1361-6560/aac504.
3
High-frequency SiPM readout advances measured coincidence time resolution limits in TOF-PET.
Phys Med Biol. 2019 Feb 27;64(5):055012. doi: 10.1088/1361-6560/aafd52.
4
Scalable electronic readout design for a 100 ps coincidence time resolution TOF-PET system.
Phys Med Biol. 2021 Apr 14;66(8). doi: 10.1088/1361-6560/abf1bc.
5
6
Study of optical reflectors for a 100ps coincidence time resolution TOF-PET detector design.
Biomed Phys Eng Express. 2021 Sep 15;7(6). doi: 10.1088/2057-1976/ac240e.
8
Electronics method to advance the coincidence time resolution with bismuth germanate.
Phys Med Biol. 2019 Sep 5;64(17):175016. doi: 10.1088/1361-6560/ab31e3.

引用本文的文献

1
Development of Whole-Body TOF-DOI PET Detector Using Dual-Ended Readout Method.
IEEE Trans Instrum Meas. 2025;74. doi: 10.1109/tim.2025.3570343. Epub 2025 May 15.
2
Comprehensive simulation study and preliminary results on various shapes of nanopatterns for light extraction improvement in scintillation crystal.
Biomed Eng Lett. 2025 Jan 20;15(2):367-376. doi: 10.1007/s13534-024-00454-4. eCollection 2025 Mar.
4
Purcell-enhanced x-ray scintillation.
Sci Adv. 2024 Nov;10(44):eadq6325. doi: 10.1126/sciadv.adq6325. Epub 2024 Nov 1.
5
Strategies for mitigating inter-crystal scattering effects in positron emission tomography: a comprehensive review.
Biomed Eng Lett. 2024 Sep 17;14(6):1243-1258. doi: 10.1007/s13534-024-00427-7. eCollection 2024 Nov.
6
7
Timing Estimation and Limits in TOF-PET Detectors Producing Prompt Photons.
IEEE Trans Radiat Plasma Med Sci. 2023 Sep;7(7):692-703. doi: 10.1109/trpms.2023.3279455. Epub 2023 May 24.
9
Investigation of Electronic Signal Processing Chains for a Prototype TOF-PET System With 100-ps Coincidence Time Resolution.
IEEE Trans Radiat Plasma Med Sci. 2022 Jul;6(6):690-696. doi: 10.1109/trpms.2021.3124756. Epub 2021 Nov 2.
10
Silicon photomultiplier signal readout and multiplexing techniques for positron emission tomography: a review.
Biomed Eng Lett. 2022 Jul 16;12(3):263-283. doi: 10.1007/s13534-022-00234-y. eCollection 2022 Aug.

本文引用的文献

1
Studies of a Next-Generation Silicon-Photomultiplier-Based Time-of-Flight PET/CT System.
J Nucl Med. 2017 Sep;58(9):1511-1518. doi: 10.2967/jnumed.117.189514. Epub 2017 Apr 27.
2
Highly multiplexed signal readout for a time-of-flight positron emission tomography detector based on silicon photomultipliers.
J Med Imaging (Bellingham). 2017 Jan;4(1):011012. doi: 10.1117/1.JMI.4.1.011012. Epub 2017 Mar 23.
3
BGO as a hybrid scintillator / Cherenkov radiator for cost-effective time-of-flight PET.
Phys Med Biol. 2017 Jun 7;62(11):4421-4439. doi: 10.1088/1361-6560/aa6a49. Epub 2017 Mar 30.
4
Study of material properties important for an optical property modulation-based radiation detection method for positron emission tomography.
J Med Imaging (Bellingham). 2017 Jan;4(1):011010. doi: 10.1117/1.JMI.4.1.011010. Epub 2017 Feb 1.
5
A promising new mechanism of ionizing radiation detection for positron emission tomography: modulation of optical properties.
Phys Med Biol. 2016 Nov 7;61(21):7600-7622. doi: 10.1088/0031-9155/61/21/7600. Epub 2016 Oct 7.
6
Bismuth germanate coupled to near ultraviolet silicon photomultipliers for time-of-flight PET.
Phys Med Biol. 2016 Sep 21;61(18):L38-L47. doi: 10.1088/0031-9155/61/18/L38. Epub 2016 Sep 2.
8
Achieving fast timing performance with multiplexed SiPMs.
Phys Med Biol. 2016 Apr 7;61(7):2879-92. doi: 10.1088/0031-9155/61/7/2879. Epub 2016 Mar 17.
10
Advances in coincidence time resolution for PET.
Phys Med Biol. 2016 Mar 21;61(6):2255-64. doi: 10.1088/0031-9155/61/6/2255. Epub 2016 Feb 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验