Lehrstuhl für Biochemie, Universität Bayreuth, 95447 Bayreuth, Germany.
Lehrstuhl für Biochemie, Universität Bayreuth, 95447 Bayreuth, Germany; Institute of Innate Immunity, Universität Bonn, 53127 Bonn, Germany.
J Mol Biol. 2019 Aug 9;431(17):3029-3045. doi: 10.1016/j.jmb.2019.07.011. Epub 2019 Jul 10.
As diffusible second messengers, cyclic nucleoside monophosphates (cNMPs) relay and amplify molecular signals in myriad cellular pathways. The triggering of downstream physiological responses often requires defined cNMP gradients in time and space, generated through the concerted action of nucleotidyl cyclases and phosphodiesterases (PDEs). In an approach denoted optogenetics, sensory photoreceptors serve as genetically encoded, light-responsive actuators to enable the noninvasive, reversible, and spatiotemporally precise control of manifold cellular processes, including cNMP metabolism. Although nature provides efficient photoactivated nucleotidyl cyclases, light-responsive PDEs are scarce. Through modular recombination of a bacteriophytochrome photosensor and the effector of human PDE2A, we previously generated the light-activated, cNMP-specific PDE LAPD. By pursuing parallel design strategies, we here report a suite of derivative PDEs with enhanced amplitude and reversibility of photoactivation. Opposite to LAPD, far-red light completely reverts prior activation by red light in several PDEs. These improved PDEs thus complement photoactivated nucleotidyl cyclases and extend the sensitivity of optogenetics to red and far-red light. More generally, our study informs future efforts directed at designing bacteriophytochrome photoreceptors.
作为可扩散的第二信使,环核苷酸单磷酸(cNMPs)在众多细胞途径中传递和放大分子信号。下游生理反应的触发通常需要在时间和空间上产生特定的 cNMP 梯度,这是通过核苷酰环化酶和磷酸二酯酶(PDEs)的协同作用产生的。在一种称为光遗传学的方法中,感觉光感受器作为遗传编码的、光响应的致动器,能够实现多种细胞过程的非侵入性、可逆性和时空精确控制,包括 cNMP 代谢。尽管自然界提供了高效的光激活核苷酰环化酶,但光响应 PDE 却很少。通过细菌视紫红质光传感器和人 PDE2A 效应物的模块化重组,我们之前生成了光激活的、cNMP 特异性的 PDE LAPD。通过追求并行设计策略,我们在此报告了一系列具有增强的光激活幅度和可逆性的衍生 PDE。与 LAPD 相反,在几种 PDE 中,远红光完全逆转了先前由红光产生的激活。因此,这些改进的 PDE 补充了光激活核苷酰环化酶,并将光遗传学的敏感性扩展到红光和远红光。更普遍地说,我们的研究为设计细菌视紫红质光感受器的未来努力提供了信息。