Suppr超能文献

结合形态学和生物力学因素进行最佳颈动脉斑块进展预测:一项基于 MRI 的 3D 薄层模型随访研究。

Combining morphological and biomechanical factors for optimal carotid plaque progression prediction: An MRI-based follow-up study using 3D thin-layer models.

机构信息

School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.

School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA 01609, USA.

出版信息

Int J Cardiol. 2019 Oct 15;293:266-271. doi: 10.1016/j.ijcard.2019.07.005. Epub 2019 Jul 4.

Abstract

Plaque progression prediction is of fundamental significance to cardiovascular research and disease diagnosis, prevention, and treatment. Magnetic resonance image (MRI) data of carotid atherosclerotic plaques were acquired from 20 patients with consent obtained. 3D thin-layer models were constructed to calculate plaque stress and strain. Data for ten morphological and biomechanical risk factors were extracted for analysis. Wall thickness increase (WTI), plaque burden increase (PBI) and plaque area increase (PAI) were chosen as three measures for plaque progression. Generalized linear mixed models (GLMM) with 5-fold cross-validation strategy were used to calculate prediction accuracy and identify optimal predictor. The optimal predictor for PBI was the combination of lumen area (LA), plaque area (PA), lipid percent (LP), wall thickness (WT), maximum plaque wall stress (MPWS) and maximum plaque wall strain (MPWSn) with prediction accuracy = 1.4146 (area under the receiver operating characteristic curve (AUC) value is 0.7158), while PA, plaque burden (PB), WT, LP, minimum cap thickness, MPWS and MPWSn was the best for WTI (accuracy = 1.3140, AUC = 0.6552), and a combination of PA, PB, WT, MPWS, MPWSn and average plaque wall strain (APWSn) was the best for PAI with prediction accuracy = 1.3025 (AUC = 0.6657). The combinational predictors improved prediction accuracy by 9.95%, 4.01% and 1.96% over the best single predictors for PAI, PBI and WTI (AUC values improved by 9.78%, 9.45%, and 2.14%), respectively. This suggests that combining both morphological and biomechanical risk factors could lead to better patient screening strategies.

摘要

斑块进展预测对心血管研究以及疾病的诊断、预防和治疗具有重要意义。本研究共纳入 20 名患者,征得患者同意后获取颈动脉粥样硬化斑块的磁共振成像(MRI)数据。构建 3D 薄层模型以计算斑块的应力和应变。提取 10 个形态学和生物力学危险因素的数据进行分析。选择壁厚度增加(WTI)、斑块负荷增加(PBI)和斑块面积增加(PAI)作为斑块进展的三个指标。采用 5 折交叉验证策略的广义线性混合模型(GLMM)计算预测准确性并识别最佳预测因子。PBI 的最佳预测因子是管腔面积(LA)、斑块面积(PA)、脂质百分比(LP)、壁厚度(WT)、最大斑块壁应力(MPWS)和最大斑块壁应变(MPWSn)的组合,预测准确性为 1.4146(AUC 值为 0.7158),而 PA、斑块负荷(PB)、WT、LP、最小帽厚度、MPWS 和 MPWSn 是 WTI 的最佳预测因子(准确性为 1.3140,AUC 值为 0.6552),PA、PB、WT、MPWS、MPWSn 和平均斑块壁应变(APWSn)的组合是 PAI 的最佳预测因子,预测准确性为 1.3025(AUC 值为 0.6657)。与最佳单因素预测因子相比,组合预测因子分别提高了 PAI、PBI 和 WTI 的预测准确性 9.95%、4.01%和 1.96%(AUC 值分别提高了 9.78%、9.45%和 2.14%)。这表明结合形态学和生物力学危险因素可以制定更好的患者筛选策略。

相似文献

4
Multi-factor decision-making strategy for better coronary plaque burden increase prediction: a patient-specific 3D FSI study using IVUS follow-up data.
Biomech Model Mechanobiol. 2019 Oct;18(5):1269-1280. doi: 10.1007/s10237-019-01143-3. Epub 2019 Apr 1.
5
3D MRI-based multicomponent thin layer structure only plaque models for atherosclerotic plaques.
J Biomech. 2016 Sep 6;49(13):2726-2733. doi: 10.1016/j.jbiomech.2016.06.002. Epub 2016 Jun 8.
7
Using intravascular ultrasound image-based fluid-structure interaction models and machine learning methods to predict human coronary plaque vulnerability change.
Comput Methods Biomech Biomed Engin. 2020 Nov;23(15):1267-1276. doi: 10.1080/10255842.2020.1795838. Epub 2020 Jul 22.
10
IVUS-based FSI models for human coronary plaque progression study: components, correlation and predictive analysis.
Ann Biomed Eng. 2015 Jan;43(1):107-21. doi: 10.1007/s10439-014-1118-1. Epub 2014 Sep 23.

引用本文的文献

3
Novel imaging modalities for the identification of vulnerable plaques.
Front Cardiovasc Med. 2024 Sep 12;11:1450252. doi: 10.3389/fcvm.2024.1450252. eCollection 2024.
4
Impact of residual stress on coronary plaque stress/strain calculations using optical coherence tomography image-based multi-layer models.
Front Cardiovasc Med. 2024 Apr 25;11:1395257. doi: 10.3389/fcvm.2024.1395257. eCollection 2024.
10

本文引用的文献

3
Why is the management of asymptomatic carotid disease so controversial?
Surgeon. 2015 Feb;13(1):34-43. doi: 10.1016/j.surge.2014.08.004. Epub 2014 Oct 14.
4
Identifying which patients with asymptomatic carotid stenosis could benefit from intervention.
Stroke. 2014 Dec;45(12):3720-4. doi: 10.1161/STROKEAHA.114.006912. Epub 2014 Oct 30.
7
Planar biaxial characterization of diseased human coronary and carotid arteries for computational modeling.
J Biomech. 2012 Mar 15;45(5):790-8. doi: 10.1016/j.jbiomech.2011.11.019. Epub 2012 Jan 10.
8
Time to rethink management strategies in asymptomatic carotid artery disease.
Nat Rev Cardiol. 2011 Oct 11;9(2):116-24. doi: 10.1038/nrcardio.2011.151.
10
Study of carotid arterial plaque stress for symptomatic and asymptomatic patients.
J Biomech. 2011 Sep 23;44(14):2551-7. doi: 10.1016/j.jbiomech.2011.07.012. Epub 2011 Aug 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验