Suppr超能文献

cAMP/EPAC2 调控葡萄糖依赖的高尔基体衍生微管促进胰腺β细胞分泌囊泡发生。

Regulation of Glucose-Dependent Golgi-Derived Microtubules by cAMP/EPAC2 Promotes Secretory Vesicle Biogenesis in Pancreatic β Cells.

机构信息

Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA.

Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Medicine, Vanderbilt University, Nashville, TN 37235, USA.

出版信息

Curr Biol. 2019 Jul 22;29(14):2339-2350.e5. doi: 10.1016/j.cub.2019.06.032. Epub 2019 Jul 11.

Abstract

The microtubule (MT) network is an essential regulator of insulin secretion from pancreatic β cells, which is central to blood-sugar homeostasis. We find that when glucose metabolism induces insulin secretion, it also increases formation of Golgi-derived microtubules (GDMTs), notably with the same biphasic kinetics as insulin exocytosis. Furthermore, GDMT nucleation is controlled by a glucose signal-transduction pathway through cAMP and its effector EPAC2. Preventing new GDMT nucleation dramatically affects the pipeline of insulin production, storage, and release. There is an overall reduction of β-cell insulin content, and remaining insulin becomes retained within the Golgi, likely because of stalling of insulin-granule budding. While not preventing glucose-induced insulin exocytosis, the diminished granule availability substantially blunts the amount secreted. Constant dynamic maintenance of the GDMT network is therefore critical for normal β-cell physiology. Our study demonstrates that the biogenesis of post-Golgi carriers, particularly large secretory granules, requires ongoing nucleation and replenishment of the GDMT network.

摘要

微管(MT)网络是胰腺β细胞胰岛素分泌的重要调节因子,对血糖稳态至关重要。我们发现,当葡萄糖代谢诱导胰岛素分泌时,它也会增加高尔基体衍生微管(GDMTs)的形成,特别是与胰岛素胞吐作用相同的双相动力学。此外,GDMT 的成核受通过 cAMP 和其效应物 EPAC2 的葡萄糖信号转导途径控制。阻止新的 GDMT 成核会严重影响胰岛素产生、储存和释放的流水线。β 细胞胰岛素含量总体减少,剩余的胰岛素滞留在高尔基体中,可能是因为胰岛素颗粒出芽停滞。虽然不会阻止葡萄糖诱导的胰岛素胞吐作用,但颗粒可用性的减少会大大减少分泌量。因此,GDMT 网络的持续动态维持对于正常的β细胞生理学至关重要。我们的研究表明,高尔基体后载体的生物发生,特别是大的分泌颗粒,需要 GDMT 网络的持续成核和补充。

相似文献

1
Regulation of Glucose-Dependent Golgi-Derived Microtubules by cAMP/EPAC2 Promotes Secretory Vesicle Biogenesis in Pancreatic β Cells.
Curr Biol. 2019 Jul 22;29(14):2339-2350.e5. doi: 10.1016/j.cub.2019.06.032. Epub 2019 Jul 11.
2
The microtubule associated protein syntabulin is required for glucose-stimulated and cAMP-potentiated insulin secretion.
FEBS Lett. 2012 Oct 19;586(20):3674-80. doi: 10.1016/j.febslet.2012.08.025. Epub 2012 Sep 6.
6
Microtubules Negatively Regulate Insulin Secretion in Pancreatic β Cells.
Dev Cell. 2015 Sep 28;34(6):656-68. doi: 10.1016/j.devcel.2015.08.020.
7
cAMP increases the sensitivity of exocytosis to Ca²+ primarily through protein kinase A in mouse pancreatic beta cells.
Cell Calcium. 2011 Feb;49(2):89-99. doi: 10.1016/j.ceca.2010.12.005. Epub 2011 Jan 15.
9
Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP.
Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19333-8. doi: 10.1073/pnas.0707054104. Epub 2007 Nov 26.
10
Recruitment of Epac2A to Insulin Granule Docking Sites Regulates Priming for Exocytosis.
Diabetes. 2017 Oct;66(10):2610-2622. doi: 10.2337/db17-0050. Epub 2017 Jul 5.

引用本文的文献

1
Submembrane liprin-α1 clusters spatially localize insulin granule fusion.
J Cell Biol. 2025 Oct 6;224(10). doi: 10.1083/jcb.202410210. Epub 2025 Aug 28.
2
Decoding the role of microtubules: a trafficking road for vesicle.
Theranostics. 2025 Apr 9;15(11):5138-5152. doi: 10.7150/thno.110120. eCollection 2025.
4
Sulfation pathways in the maintenance of functional beta-cell mass and implications for diabetes.
Essays Biochem. 2024 Dec 4;68(4):509-522. doi: 10.1042/EBC20240034.
5
Trafficking of hormones and trophic factors to secretory and extracellular vesicles: a historical perspective and new hypothesis.
Extracell Vesicles Circ Nucl Acids. 2023;4(4):568-587. doi: 10.20517/evcna.2023.34. Epub 2023 Nov 9.
7
Interplay of self-organization of microtubule asters and crosslinking protein condensates.
PNAS Nexus. 2023 Jul 13;2(7):pgad231. doi: 10.1093/pnasnexus/pgad231. eCollection 2023 Jul.
8
9
Bioinformatic prediction of the molecular links between Alzheimer's disease and diabetes mellitus.
PeerJ. 2023 Feb 7;11:e14738. doi: 10.7717/peerj.14738. eCollection 2023.
10
Inflammatory Cytokines Rewire the Proinsulin Interaction Network in Human Islets.
J Clin Endocrinol Metab. 2022 Nov 23;107(11):3100-3110. doi: 10.1210/clinem/dgac493.

本文引用的文献

1
Pancreatic β-Cell Electrical Activity and Insulin Secretion: Of Mice and Men.
Physiol Rev. 2018 Jan 1;98(1):117-214. doi: 10.1152/physrev.00008.2017.
2
Nonrandom γ-TuNA-dependent spatial pattern of microtubule nucleation at the Golgi.
Mol Biol Cell. 2017 Nov 7;28(23):3181-3192. doi: 10.1091/mbc.E17-06-0425. Epub 2017 Sep 20.
3
Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics.
Cell Metab. 2017 Feb 7;25(2):262-284. doi: 10.1016/j.cmet.2016.12.022.
4
Pancreatic regulation of glucose homeostasis.
Exp Mol Med. 2016 Mar 11;48(3):e219. doi: 10.1038/emm.2016.6.
5
Microtubules Negatively Regulate Insulin Secretion in Pancreatic β Cells.
Dev Cell. 2015 Sep 28;34(6):656-68. doi: 10.1016/j.devcel.2015.08.020.
6
Microtubule-associated proteins control the kinetics of microtubule nucleation.
Nat Cell Biol. 2015 Jul;17(7):907-16. doi: 10.1038/ncb3188. Epub 2015 Jun 22.
7
β-cell dysfunction: Its critical role in prevention and management of type 2 diabetes.
World J Diabetes. 2015 Feb 15;6(1):109-24. doi: 10.4239/wjd.v6.i1.109.
8
Aged insulin granules display reduced microtubule-dependent mobility and are disposed within actin-positive multigranular bodies.
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):E667-76. doi: 10.1073/pnas.1409542112. Epub 2015 Feb 2.
9
Cytoskeletal dependence of insulin granule movement dynamics in INS-1 beta-cells in response to glucose.
PLoS One. 2014 Oct 13;9(10):e109082. doi: 10.1371/journal.pone.0109082. eCollection 2014.
10
Intracellular transport of insulin granules is a subordinated random walk.
Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):4911-6. doi: 10.1073/pnas.1221962110. Epub 2013 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验