Department of Cell and Developmental Biology, The Program of Developmental Biology and the Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States of America.
PLoS One. 2021 Jul 22;16(7):e0241939. doi: 10.1371/journal.pone.0241939. eCollection 2021.
For sustainable function, each pancreatic islet β cell maintains thousands of insulin secretory granules (SGs) at all times. Glucose stimulation induces the secretion of a small portion of these SGs and simultaneously boosts SG biosynthesis to sustain this stock. The failure of these processes, often induced by sustained high-insulin output, results in type 2 diabetes. Intriguingly, young insulin SGs are more likely secreted during glucose-stimulated insulin secretion (GSIS) for unknown reasons, while older SGs tend to lose releasability and be degraded. Here, we examine the roles of microtubule (MT) and Gαo-signaling in regulating the preferential secretion of young versus old SGs. We show that both MT-destabilization and Gαo inactivation results in more SGs localization near plasma membrane (PM) despite higher levels of GSIS and reduced SG biosynthesis. Intriguingly, MT-destabilization or Gαo-inactivation results in higher secretion probabilities of older SGs, while combining both having additive effects on boosting GSIS. Lastly, Gαo inactivation does not detectably destabilize the β-cell MT network. These findings suggest that Gαo and MT can modulate the preferential release of younger insulin SGs via largely parallel pathways.
为了实现可持续的功能,每个胰腺胰岛β细胞始终维持着数千个胰岛素分泌颗粒(SGs)。葡萄糖刺激诱导这些 SGs 的一小部分分泌,同时促进 SG 生物合成以维持这种储备。这些过程的失败,通常是由持续的高胰岛素输出引起的,导致 2 型糖尿病。有趣的是,年轻的胰岛素 SGs 在葡萄糖刺激的胰岛素分泌(GSIS)期间更有可能被分泌,原因尚不清楚,而较旧的 SGs 往往失去可释放性并被降解。在这里,我们研究了微管(MT)和 Gαo 信号在调节年轻 SGs 与年老 SGs 优先分泌中的作用。我们发现,MT 解稳定和 Gαo 失活都导致更多的 SGs 定位在靠近质膜(PM),尽管 GSIS 水平更高,SG 生物合成减少。有趣的是,MT 解稳定或 Gαo 失活导致年老 SGs 的分泌概率更高,而两者结合对促进 GSIS 有相加效应。最后,Gαo 失活不会明显破坏β细胞的 MT 网络。这些发现表明,Gαo 和 MT 可以通过大致平行的途径调节年轻胰岛素 SGs 的优先释放。