Suppr超能文献

复制体结构揭示了连续叉推进和复制后修复的机制。

Replisome structure suggests mechanism for continuous fork progression and post-replication repair.

机构信息

Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.

Laboratory of Molecular Gerontology, National Institute of Aging, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD, 21224, USA.

出版信息

DNA Repair (Amst). 2019 Sep;81:102658. doi: 10.1016/j.dnarep.2019.102658. Epub 2019 Jul 8.

Abstract

What happens to DNA replication when it encounters a damaged or nicked DNA template has been under investigation for five decades. Initially it was thought that DNA polymerase, and thus the replication-fork progression, would stall at road blocks. After the discovery of replication-fork helicase and replication re-initiation factors by the 1990s, it became clear that the replisome can "skip" impasses and finish replication with single-stranded gaps and double-strand breaks in the product DNA. But the mechanism for continuous fork progression after encountering roadblocks is entangled with translesion synthesis, replication fork reversal and recombination repair. The recently determined structure of the bacteriophage T7 replisome offers the first glimpse of how helicase, primase, leading-and lagging-strand DNA polymerases are organized around a DNA replication fork. The tightly coupled leading-strand polymerase and lagging-strand helicase provides a scaffold to consolidate data accumulated over the past five decades and offers a fresh perspective on how the replisome may skip lesions and complete discontinuous DNA synthesis. Comparison of the independently evolved bacterial and eukaryotic replisomes suggests that repair of discontinuous DNA synthesis occurs post replication in both.

摘要

当 DNA 复制遇到受损或缺口的 DNA 模板时会发生什么,这个问题已经被研究了五十年。最初,人们认为 DNA 聚合酶,也就是复制叉的推进,会在障碍物处停滞。在 20 世纪 90 年代发现复制叉解旋酶和复制起始因子后,人们清楚地认识到,复制体可以“跳过”障碍,并在产物 DNA 中留下单链缺口和双链断裂,完成复制。但在遇到障碍后,连续的叉推进机制与跨损伤合成、复制叉反转和重组修复交织在一起。最近确定的噬菌体 T7 复制体结构首次揭示了解旋酶、引发酶、前导链和滞后链 DNA 聚合酶如何围绕 DNA 复制叉组织在一起。紧密偶联的前导链聚合酶和滞后链解旋酶为整合过去五十年积累的数据提供了一个支架,并为复制体如何跳过损伤并完成不连续的 DNA 合成提供了新的视角。对独立进化的细菌和真核复制体的比较表明,在这两种复制体中,不连续的 DNA 合成的修复都发生在复制之后。

相似文献

1
Replisome structure suggests mechanism for continuous fork progression and post-replication repair.
DNA Repair (Amst). 2019 Sep;81:102658. doi: 10.1016/j.dnarep.2019.102658. Epub 2019 Jul 8.
3
T7 replisome directly overcomes DNA damage.
Nat Commun. 2015 Dec 17;6:10260. doi: 10.1038/ncomms10260.
4
Binding Affinities among DNA Helicase-Primase, DNA Polymerase, and Replication Intermediates in the Replisome of Bacteriophage T7.
J Biol Chem. 2016 Jan 15;291(3):1472-80. doi: 10.1074/jbc.M115.698233. Epub 2015 Nov 30.
6
Motors, switches, and contacts in the replisome.
Annu Rev Biochem. 2009;78:205-43. doi: 10.1146/annurev.biochem.78.072407.103248.
7
Assembling bacteriophage T7 leading-strand replisome for structural investigation.
Methods Enzymol. 2022;672:103-123. doi: 10.1016/bs.mie.2022.03.009. Epub 2022 Apr 5.
8
Response of the bacteriophage T4 replisome to noncoding lesions and regression of a stalled replication fork.
J Mol Biol. 2010 Sep 3;401(5):743-56. doi: 10.1016/j.jmb.2010.06.027. Epub 2010 Jun 25.
10
DNA Helicase-Polymerase Coupling in Bacteriophage DNA Replication.
Viruses. 2021 Aug 31;13(9):1739. doi: 10.3390/v13091739.

引用本文的文献

1
A Bacteriophage-Derived Primase-Helicase Orchestrates Plant Organellar DNA Replication.
Physiol Plant. 2025 Jul-Aug;177(4):e70379. doi: 10.1111/ppl.70379.
3
Repair of genomic interstrand crosslinks.
DNA Repair (Amst). 2024 Sep;141:103739. doi: 10.1016/j.dnarep.2024.103739. Epub 2024 Jul 30.
4
The Response of the Replication Apparatus to Leading Template Strand Blocks.
Cells. 2023 Nov 11;12(22):2607. doi: 10.3390/cells12222607.
5
Imaging the cellular response to an antigen tagged interstrand crosslinking agent.
DNA Repair (Amst). 2023 Aug;128:103525. doi: 10.1016/j.dnarep.2023.103525. Epub 2023 Jun 9.
6
Generation and Repair of Postreplication Gaps in Escherichia coli.
Microbiol Mol Biol Rev. 2023 Jun 28;87(2):e0007822. doi: 10.1128/mmbr.00078-22. Epub 2023 May 22.
7
Direct visualization of transcription-replication conflicts reveals post-replicative DNA:RNA hybrids.
Nat Struct Mol Biol. 2023 Mar;30(3):348-359. doi: 10.1038/s41594-023-00928-6. Epub 2023 Mar 2.
8
Structural and dynamic basis of DNA capture and translocation by mitochondrial Twinkle helicase.
Nucleic Acids Res. 2022 Nov 11;50(20):11965-11978. doi: 10.1093/nar/gkac1089.
9
The mismatch recognition protein MutSα promotes nascent strand degradation at stalled replication forks.
Proc Natl Acad Sci U S A. 2022 Oct 4;119(40):e2201738119. doi: 10.1073/pnas.2201738119. Epub 2022 Sep 26.
10
Quantitative methods to study helicase, DNA polymerase, and exonuclease coupling during DNA replication.
Methods Enzymol. 2022;672:75-102. doi: 10.1016/bs.mie.2022.03.011. Epub 2022 May 12.

本文引用的文献

1
Remodeling of Interstrand Crosslink Proximal Replisomes Is Dependent on ATR, FANCM, and FANCD2.
Cell Rep. 2019 May 7;27(6):1794-1808.e5. doi: 10.1016/j.celrep.2019.04.032.
2
Structures and operating principles of the replisome.
Science. 2019 Feb 22;363(6429). doi: 10.1126/science.aav7003. Epub 2019 Jan 24.
3
The CMG Helicase Bypasses DNA-Protein Cross-Links to Facilitate Their Repair.
Cell. 2019 Jan 10;176(1-2):167-181.e21. doi: 10.1016/j.cell.2018.10.053. Epub 2018 Dec 27.
5
Structure-specific DNA replication-fork recognition directs helicase and replication restart activities of the PriA helicase.
Proc Natl Acad Sci U S A. 2018 Sep 25;115(39):E9075-E9084. doi: 10.1073/pnas.1809842115. Epub 2018 Sep 10.
7
Replication Fork Reversal during DNA Interstrand Crosslink Repair Requires CMG Unloading.
Cell Rep. 2018 Jun 19;23(12):3419-3428. doi: 10.1016/j.celrep.2018.05.061.
8
Replication Fork Breakage and Restart in Escherichia coli.
Microbiol Mol Biol Rev. 2018 Jun 13;82(3). doi: 10.1128/MMBR.00013-18. Print 2018 Sep.
9
Translesion and Repair DNA Polymerases: Diverse Structure and Mechanism.
Annu Rev Biochem. 2018 Jun 20;87:239-261. doi: 10.1146/annurev-biochem-062917-012405. Epub 2018 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验