Suppr超能文献

使用贝叶斯混合模型评估重症精神疾病患者的数字药物摄入数据。

Evaluating digital medicine ingestion data from seriously mentally ill patients with a Bayesian Hybrid Model.

作者信息

Knights Jonathan, Heidary Zahra, Peters-Strickland Timothy, Ramanathan Murali

机构信息

1Otsuka Pharmaceutical Development & Commercialization, Inc.: 508 Carnegie Center, Princeton, NJ USA.

2State University of Buffalo at New York, School of Pharmacy and Pharmaceutical Sciences, 355 Kapoor Hall, Buffalo, NY 14214 USA.

出版信息

NPJ Digit Med. 2019 Mar 22;2:20. doi: 10.1038/s41746-019-0095-z. eCollection 2019.

Abstract

The objective of this work was to adapt and evaluate the performance of a Bayesian hybrid model to characterize objective temporal medication ingestion parameters from two clinical studies in patients with serious mental illness (SMI) receiving treatment with a digital medicine system. This system provides a signal from an ingested sensor contained in the dosage form to a patient-worn patch and transmits this signal via the patient's mobile device. A previously developed hybrid Markov-von Mises model was used to obtain maximum-likelihood estimates for medication ingestion behavior parameters for individual patients. The individual parameter estimates were modeled to obtain distribution parameters of priors implemented in a Markov chain-Monte Carlo framework. Clinical and demographic covariates associated with model ingestion parameters were also assessed. We obtained individual estimates of overall observed ingestion percent (median:75.9%, range:18.2-98.3%, IQR:32.9%), rate of excess dosing events (median:0%, range:0-14.3%, IQR:3.0%) and observed ingestion duration. The modeling also provided estimates of the Markov-dependence probabilities of dosing success following a dosing success or failure. The ingestion-timing deviations were modeled with the von Mises distribution. A subset of 17 patients (22.1%) were identified as prompt correctors based on Markov-dependence probability of a dosing failure followed by a dosing success of unity. The prompt corrector sub-group had a better overall digital medicine ingestion parameter profile compared to those who were not prompt correctors. Our results demonstrate the potential utility of a Bayesian Hybrid Markov-von Mises model for characterizing digital medicine ingestion patterns in patients with SMI.

摘要

这项工作的目的是调整并评估一种贝叶斯混合模型的性能,以从两项针对接受数字药物系统治疗的严重精神疾病(SMI)患者的临床研究中,表征客观的服药时间参数。该系统将剂型中所含摄入传感器发出的信号传输至患者佩戴的贴片,并通过患者的移动设备发送此信号。使用先前开发的混合马尔可夫 - 冯·米塞斯模型来获取个体患者服药行为参数的最大似然估计值。对个体参数估计值进行建模,以获得在马尔可夫链 - 蒙特卡罗框架中实现的先验分布参数。还评估了与模型摄入参数相关的临床和人口统计学协变量。我们获得了总体观察到的摄入百分比(中位数:75.9%,范围:18.2 - 98.3%,四分位距:32.9%)、过量给药事件发生率(中位数:0%,范围:0 - 14.3%,四分位距:3.0%)以及观察到的摄入持续时间的个体估计值。该建模还提供了给药成功或失败后给药成功的马尔可夫依赖性概率估计值。摄入时间偏差采用冯·米塞斯分布进行建模。根据给药失败后给药成功的马尔可夫依赖性概率为1,确定了17名患者(22.1%)的子集为及时纠正者。与非及时纠正者相比,及时纠正者亚组的总体数字药物摄入参数情况更好。我们的结果证明了贝叶斯混合马尔可夫 - 冯·米塞斯模型在表征SMI患者数字药物摄入模式方面的潜在效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d87/6550231/c9ab5601b457/41746_2019_95_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验