Suppr超能文献

基于Transformer生成的原子嵌入,通过机器学习提高晶体性质的预测精度。

Transformer-generated atomic embeddings to enhance prediction accuracy of crystal properties with machine learning.

作者信息

Jin Luozhijie, Du Zijian, Shu Le, Cen Yan, Xu Yuanfeng, Mei Yongfeng, Zhang Hao

机构信息

School of Information Science and Technology, Fudan University, Shanghai, China.

Department of Physics, Fudan University, Shanghai, China.

出版信息

Nat Commun. 2025 Jan 31;16(1):1210. doi: 10.1038/s41467-025-56481-x.

Abstract

Accelerating the discovery of novel crystal materials by machine learning is crucial for advancing various technologies from clean energy to information processing. The machine-learning models for prediction of materials properties require embedding atomic information, while traditional methods have limited effectiveness in enhancing prediction accuracy. Here, we proposed an atomic embedding strategy called universal atomic embeddings (UAEs) for their broad applicability as atomic fingerprints, and generated the UAE tensors based on the proposed CrystalTransformer model. By performing experiments on widely-used materials database, our CrystalTransformer-based UAEs (ct-UAEs) are shown to accurately capture complex atomic features, leading to a 14% improvement in prediction accuracy on CGCNN and 18% on ALIGNN when using formation energies as the target, based on the Materials Project database. We also demonstrated the good transferability of ct-UAEs across various databases. Based on the clustering analysis for multi-task ct-UAEs, the elements in the periodic table can be categorized with reasonable connections between atomic features and targeted crystal properties. After applying ct-UAEs to predict formation energy in hybrid perovskites database, we realized an improvement in accuracy, with a 34% boost in MEGNET and 16% in CGCNN, showcasing their potential as atomic fingerprints to address the data scarcity challenges.

摘要

通过机器学习加速新型晶体材料的发现对于推动从清洁能源到信息处理等各种技术至关重要。预测材料特性的机器学习模型需要嵌入原子信息,而传统方法在提高预测准确性方面效果有限。在此,我们提出了一种称为通用原子嵌入(UAEs)的原子嵌入策略,因其作为原子指纹具有广泛适用性,并基于所提出的晶体变换器(CrystalTransformer)模型生成了UAE张量。通过在广泛使用的材料数据库上进行实验,我们基于晶体变换器的UAE(ct-UAEs)被证明能够准确捕获复杂的原子特征,基于材料项目数据库,以形成能为目标时,在CGCNN上预测准确性提高了14%,在ALIGNN上提高了18%。我们还展示了ct-UAEs在各种数据库之间良好的可转移性。基于对多任务ct-UAEs的聚类分析,元素周期表中的元素可以根据原子特征与目标晶体特性之间合理的联系进行分类。在将ct-UAEs应用于预测混合钙钛矿数据库中的形成能后,我们实现了准确性的提高,在MEGNET中提高了34%,在CGCNN中提高了16%,展示了它们作为原子指纹应对数据稀缺挑战的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13ed/11782585/8fc1d9e2376f/41467_2025_56481_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验