Suppr超能文献

超薄氮化硅膜的纳米级机械操纵实现液浸样品的红外近场显微镜观察

Nanoscale Mechanical Manipulation of Ultrathin SiN Membranes Enabling Infrared Near-Field Microscopy of Liquid-Immersed samples.

作者信息

Baù Enrico, Gölz Thorsten, Benoit Martin, Tittl Andreas, Keilmann Fritz

机构信息

Chair in Hybrid Nanosystems and Center for NanoScience, Nano-Institute Munich, Faculty of Physics, Ludwig-Maximilians-University, Königinstr. 10, 80539, München, Germany.

Chair of Applied Physics, Molecular physics of life and Center for NanoScience, Faculty of Physics, Ludwig-Maximilians-University, Am Klopferspitz 18, 82152, Martinsried, Germany.

出版信息

Small. 2024 Nov;20(47):e2402568. doi: 10.1002/smll.202402568. Epub 2024 Aug 15.

Abstract

Scattering scanning near-field optical microscopy (s-SNOM) is a powerful technique for mid-infrared spectroscopy at nanometer length scales. By investigating objects in aqueous environments through ultrathin membranes, s-SNOM has recently been extended toward label-free nanoscopy of the dynamics of living cells and nanoparticles, assessing both the optical and the mechanical interactions between the tip, the membrane and the liquid suspension underneath. Here, the study reports that the tapping AFM tip induces a reversible nanometric deformation of the membrane manifested as either an indentation or protrusion. This mechanism depends on the driving force of the tapping cantilever, which is exploited to minimize topographical deformations of the membrane to improve optical measurements. Furthermore, it is shown that the tapping phase delay between driving signal and tip oscillation is a highly sensitive observable to study the mechanics of adhering objects, exhibiting highest contrast at low tapping amplitudes where the membrane remains nearly flat. Mechanical responses are correlated with simultaneously recorded spectroscopy data to reveal the thickness of nanometric water layers between membrane and adhering objects. Besides a general applicability of depth profiling, the technique holds great promise for studying mechano-active biopolymers and living cells, biomaterials that exhibit complex behaviors when under a mechanical load.

摘要

散射扫描近场光学显微镜(s-SNOM)是一种用于纳米尺度中红外光谱分析的强大技术。通过超薄膜对水环境中的物体进行研究,s-SNOM最近已扩展到对活细胞和纳米颗粒动力学的无标记纳米显微镜检查,评估了尖端、膜与下方液体悬浮液之间的光学和机械相互作用。在此,该研究报告称,轻敲式原子力显微镜(AFM)尖端会引起膜的可逆纳米级变形,表现为压痕或凸起。这种机制取决于轻敲悬臂的驱动力,利用该驱动力可将膜的形貌变形降至最低,以改善光学测量。此外,研究表明,驱动信号与尖端振荡之间的轻敲相位延迟是研究附着物体力学的高度敏感观测值,在膜几乎保持平坦的低轻敲幅度下表现出最高对比度。将力学响应与同时记录的光谱数据相关联,以揭示膜与附着物体之间纳米级水层的厚度。除了深度剖析的普遍适用性外,该技术在研究机械活性生物聚合物和活细胞方面也具有巨大潜力,这些生物材料在机械负载下会表现出复杂的行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d07e/11579970/d0bcb5b3a49b/SMLL-20-2402568-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验