Ferré Arnaud, Ba Mouhamadou, Bossy Robert
MaIAGE, INRA, Paris-Saclay University, 78350 Jouy-en-Josas, France.
LIMSI, CNRS, Paris-Saclay University, 91405 Orsay, France.
Genomics Inform. 2019 Jun;17(2):e20. doi: 10.5808/GI.2019.17.2.e20. Epub 2019 Jun 27.
Entity normalization, or entity linking in the general domain, is an information extraction task that aims to annotate/bind multiple words/expressions in raw text with semantic references, such as concepts of an ontology. An ontology consists minimally of a formally organized vocabulary or hierarchy of terms, which captures knowledge of a domain. Presently, machine-learning methods, often coupled with distributional representations, achieve good performance. However, these require large training datasets, which are not always available, especially for tasks in specialized domains. CONTES (CONcept-TErm System) is a supervised method that addresses entity normalization with ontology concepts using small training datasets. CONTES has some limitations, such as it does not scale well with very large ontologies, it tends to overgeneralize predictions, and it lacks valid representations for the out-of-vocabulary words. Here, we propose to assess different methods to reduce the dimensionality in the representation of the ontology. We also propose to calibrate parameters in order to make the predictions more accurate, and to address the problem of out-of-vocabulary words, with a specific method.
实体归一化,或一般领域中的实体链接,是一项信息提取任务,旨在用语义引用(如本体概念)注释/绑定原始文本中的多个单词/表达式。本体最少由一个形式上有组织的词汇表或术语层次结构组成,它捕获一个领域的知识。目前,机器学习方法(通常与分布式表示相结合)取得了良好的性能。然而,这些方法需要大量的训练数据集,而这些数据集并不总是可用的,特别是对于专业领域的任务。CONTES(概念-术语系统)是一种监督方法,它使用小训练数据集处理基于本体概念的实体归一化。CONTES有一些局限性,例如它在非常大的本体上扩展性不佳,它倾向于过度泛化预测,并且它缺乏对词汇表外单词的有效表示。在这里,我们建议评估不同的方法以降低本体表示中的维度。我们还建议校准参数以使预测更准确,并使用一种特定方法解决词汇表外单词的问题。