Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK.
MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London SW7 2AZ, UK.
Bioorg Med Chem. 2019 Oct 15;27(20):114962. doi: 10.1016/j.bmc.2019.06.025. Epub 2019 Jun 15.
The global emergence of antibiotic resistance is one of the most serious challenges facing modern medicine. There is an urgent need for validation of new drug targets and the development of small molecules with novel mechanisms of action. We therefore sought to inhibit bacterial DNA repair mediated by the AddAB/RecBCD protein complexes as a means to sensitize bacteria to DNA damage caused by the host immune system or quinolone antibiotics. A rational, hypothesis-driven compound optimization identified IMP-1700 as a cell-active, nanomolar potency compound. IMP-1700 sensitized multidrug-resistant Staphylococcus aureus to the fluoroquinolone antibiotic ciprofloxacin, where resistance results from a point mutation in the fluoroquinolone target, DNA gyrase. Cellular reporter assays indicated IMP-1700 inhibited the bacterial SOS-response to DNA damage, and compound-functionalized Sepharose successfully pulled-down the AddAB repair complex. This work provides validation of bacterial DNA repair as a novel therapeutic target and delivers IMP-1700 as a tool molecule and starting point for therapeutic development to address the pressing challenge of antibiotic resistance.
全球范围内抗生素耐药性的出现是现代医学面临的最严峻挑战之一。目前迫切需要验证新的药物靶点,并开发具有新型作用机制的小分子。因此,我们试图通过抑制 AddAB/RecBCD 蛋白复合物介导的细菌 DNA 修复,使细菌对宿主免疫系统或喹诺酮类抗生素引起的 DNA 损伤敏感。经过合理的、基于假设的化合物优化,我们确定了 IMP-1700 是一种具有细胞活性、纳米级效力的化合物。IMP-1700 使多药耐药的金黄色葡萄球菌对氟喹诺酮类抗生素环丙沙星敏感,而这种耐药性是由于氟喹诺酮类药物靶标 DNA 回旋酶的点突变引起的。细胞报告分析表明,IMP-1700 抑制了细菌对 DNA 损伤的 SOS 反应,并且功能化的琼脂糖成功地拉下了 AddAB 修复复合物。这项工作验证了细菌 DNA 修复作为一个新的治疗靶点的合理性,并提供了 IMP-1700 作为一种工具分子和起点,用于开发治疗药物以应对抗生素耐药性的紧迫挑战。