Suppr超能文献

利用餐厅数据预测社区的社会经济属性。

Predicting neighborhoods' socioeconomic attributes using restaurant data.

机构信息

Senseable City Lab, Department of Urban Studies and Planning, Massachusetts Institute of Technology, Cambridge, MA 02139.

China Future City Lab and Center for Real Estate, Department of Urban Studies and Planning, Massachusetts Institute of Technology, Cambridge, MA 02139.

出版信息

Proc Natl Acad Sci U S A. 2019 Jul 30;116(31):15447-15452. doi: 10.1073/pnas.1903064116. Epub 2019 Jul 15.

Abstract

Accessing high-resolution, timely socioeconomic data such as data on population, employment, and enterprise activity at the neighborhood level is critical for social scientists and policy makers to design and implement location-based policies. However, in many developing countries or cities, reliable local-scale socioeconomic data remain scarce. Here, we show an easily accessible and timely updated location attribute-restaurant-can be used to accurately predict a range of socioeconomic attributes of urban neighborhoods. We merge restaurant data from an online platform with 3 microdatasets for 9 Chinese cities. Using features extracted from restaurants, we train machine-learning models to estimate daytime and nighttime population, number of firms, and consumption level at various spatial resolutions. The trained model can explain 90 to 95% of the variation of those attributes across neighborhoods in the test dataset. We analyze the tradeoff between accuracy, spatial resolution, and number of training samples, as well as the heterogeneity of the predicted results across different spatial locations, demographics, and firm industries. Finally, we demonstrate the cross-city generality of this method by training the model in one city and then applying it directly to other cities. The transferability of this restaurant model can help bridge data gaps between cities, allowing all cities to enjoy big data and algorithm dividends.

摘要

获取高分辨率、及时的社会经济数据,如社区层面的人口、就业和企业活动数据,对于社会科学家和政策制定者设计和实施基于位置的政策至关重要。然而,在许多发展中国家或城市,可靠的本地尺度社会经济数据仍然稀缺。在这里,我们展示了一种易于访问和及时更新的位置属性——餐厅,可以用来准确预测城市社区的一系列社会经济属性。我们将来自在线平台的餐厅数据与 9 个中国城市的 3 个微观数据集进行了合并。我们使用从餐厅提取的特征,训练机器学习模型来估计不同空间分辨率的日间和夜间人口、企业数量和消费水平。在测试数据集中,经过训练的模型可以解释 90%至 95%的属性在社区之间的变化。我们分析了准确性、空间分辨率和训练样本数量之间的权衡,以及不同空间位置、人口统计学和企业行业的预测结果的异质性。最后,我们通过在一个城市训练模型,然后直接将其应用于其他城市,展示了这种方法的跨城市通用性。这种餐厅模型的可转移性可以帮助弥合城市之间的数据差距,使所有城市都能享受到大数据和算法红利。

相似文献

1
Predicting neighborhoods' socioeconomic attributes using restaurant data.
Proc Natl Acad Sci U S A. 2019 Jul 30;116(31):15447-15452. doi: 10.1073/pnas.1903064116. Epub 2019 Jul 15.
4
Obesogenic and youth oriented restaurant marketing in public housing neighborhoods.
Am J Health Behav. 2014 Mar;38(2):218-24. doi: 10.5993/AJHB.38.2.7.
5
Spatial patterning, correlates, and inequality in suicide across 432 neighborhoods in Taipei City, Taiwan.
Soc Sci Med. 2019 Feb;222:20-34. doi: 10.1016/j.socscimed.2018.12.011. Epub 2018 Dec 10.
6
The weight of unfinished plate: A survey based characterization of restaurant food waste in Chinese cities.
Waste Manag. 2017 Aug;66:3-12. doi: 10.1016/j.wasman.2017.04.007. Epub 2017 Apr 21.
9
Diving into the consumer nutrition environment: A Bayesian spatial factor analysis of neighborhood restaurant environment.
Spat Spatiotemporal Epidemiol. 2018 Feb;24:39-51. doi: 10.1016/j.sste.2017.12.001. Epub 2017 Dec 18.

引用本文的文献

1
Realizing the soft infrastructure mixing of Shanghai's catering industry based on land expansion and population growth.
Heliyon. 2024 Mar 26;10(7):e28744. doi: 10.1016/j.heliyon.2024.e28744. eCollection 2024 Apr 15.
3
Urban visual intelligence: Uncovering hidden city profiles with street view images.
Proc Natl Acad Sci U S A. 2023 Jul 4;120(27):e2220417120. doi: 10.1073/pnas.2220417120. Epub 2023 Jun 26.
4
Mapping urban socioeconomic inequalities in developing countries through Facebook advertising data.
Front Big Data. 2022 Nov 21;5:1006352. doi: 10.3389/fdata.2022.1006352. eCollection 2022.
5
Points of Interest (POI): a commentary on the state of the art, challenges, and prospects for the future.
Comput Urban Sci. 2022;2(1):20. doi: 10.1007/s43762-022-00047-w. Epub 2022 Jun 28.
6
News or social media? Socio-economic divide of mobile service consumption.
J R Soc Interface. 2021 Dec;18(185):20210350. doi: 10.1098/rsif.2021.0350. Epub 2021 Dec 1.
7
Neighborhood Environment, Internet Use and Mental Distress among Older Adults: The Case of Shanghai, China.
Int J Environ Res Public Health. 2021 Mar 31;18(7):3616. doi: 10.3390/ijerph18073616.
8
The Relationship between Urban Vibrancy and Built Environment: An Empirical Study from an Emerging City in an Arid Region.
Int J Environ Res Public Health. 2021 Jan 10;18(2):525. doi: 10.3390/ijerph18020525.
9
A gridded establishment dataset as a proxy for economic activity in China.
Sci Data. 2021 Jan 11;8(1):5. doi: 10.1038/s41597-020-00792-9.
10
Understanding the mesoscopic scaling patterns within cities.
Sci Rep. 2020 Dec 3;10(1):21201. doi: 10.1038/s41598-020-78135-2.

本文引用的文献

1
Spatially disaggregated population estimates in the absence of national population and housing census data.
Proc Natl Acad Sci U S A. 2018 Apr 3;115(14):3529-3537. doi: 10.1073/pnas.1715305115. Epub 2018 Mar 19.
2
Using deep learning and Google Street View to estimate the demographic makeup of neighborhoods across the United States.
Proc Natl Acad Sci U S A. 2017 Dec 12;114(50):13108-13113. doi: 10.1073/pnas.1700035114. Epub 2017 Nov 28.
3
Computer vision uncovers predictors of physical urban change.
Proc Natl Acad Sci U S A. 2017 Jul 18;114(29):7571-7576. doi: 10.1073/pnas.1619003114. Epub 2017 Jul 6.
4
Beyond prediction: Using big data for policy problems.
Science. 2017 Feb 3;355(6324):483-485. doi: 10.1126/science.aal4321. Epub 2017 Feb 2.
5
Combining satellite imagery and machine learning to predict poverty.
Science. 2016 Aug 19;353(6301):790-4. doi: 10.1126/science.aaf7894.
6
Spatiotemporal patterns of population in mainland China, 1990 to 2010.
Sci Data. 2016 Feb 16;3:160005. doi: 10.1038/sdata.2016.5.
7
Predicting poverty and wealth from mobile phone metadata.
Science. 2015 Nov 27;350(6264):1073-6. doi: 10.1126/science.aac4420.
8
Tracking employment shocks using mobile phone data.
J R Soc Interface. 2015 Jun 6;12(107). doi: 10.1098/rsif.2015.0185.
9
Economics in the age of big data.
Science. 2014 Nov 7;346(6210):1243089. doi: 10.1126/science.1243089.
10
Dynamic population mapping using mobile phone data.
Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):15888-93. doi: 10.1073/pnas.1408439111. Epub 2014 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验