Suppr超能文献

1T-TaS₂中量子阻塞转变为关联电子玻璃态 。 (注:原文中的“1T-TaS”可能有误,推测应该是“1T-TaS₂” ,已按此正确内容翻译)

Quantum jamming transition to a correlated electron glass in 1T-TaS.

作者信息

Gerasimenko Yaroslav A, Vaskivskyi Igor, Litskevich Maksim, Ravnik Jan, Vodeb Jaka, Diego Michele, Kabanov Viktor, Mihailovic Dragan

机构信息

CENN Nanocenter, Ljubljana, Slovenia.

Department of Complex Matter, Jozef Stefan Institute, Ljubljana, Slovenia.

出版信息

Nat Mater. 2019 Oct;18(10):1078-1083. doi: 10.1038/s41563-019-0423-3. Epub 2019 Jul 15.

Abstract

Distinct many-body states may be created under non-equilibrium conditions through different ordering paths, even when their constituents are subjected to the same fundamental interactions. The phase-transition mechanism to such states remains poorly understood. Here, we show that controlled optical or electromagnetic perturbations can lead to an amorphous metastable state of strongly correlated electrons in a quasi-two-dimensional dichalcogenide. Scanning tunnelling microscopy reveals a hyperuniform pattern of localized charges, whereas multitip surface nanoscale conductivity measurements and tunnelling spectroscopy show an electronically gapless conducting state that is different from conventional Coulomb glasses and many-body localized systems. The state is stable up to room temperature and shows no signs of either local charge order or phase separation. The mechanism for its formation is attributed to a dynamical localization of electrons through mutual interactions. Theoretical calculations confirm the correlations between localized charges to be crucial for the state's unusual stability.

摘要

即使组成成分受到相同的基本相互作用,在非平衡条件下通过不同的有序路径也可能产生不同的多体状态。对此类状态的相变机制仍知之甚少。在此,我们表明,可控的光学或电磁扰动可导致准二维二硫属化物中强关联电子的非晶亚稳态。扫描隧道显微镜揭示了局域电荷的超均匀模式,而多尖端表面纳米尺度电导率测量和隧道光谱显示出一种与传统库仑玻璃和多体局域系统不同的无电子能隙导电状态。该状态在室温下都保持稳定,且没有出现局部电荷有序或相分离的迹象。其形成机制归因于电子通过相互作用的动态局域化。理论计算证实,局域电荷之间的相关性对于该状态异常的稳定性至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验