Suppr超能文献

通过1T-TaS中电荷和自旋有序转变实现极化子的结晶

Crystallization of polarons through charge and spin ordering transitions in 1T-TaS.

作者信息

Bozin E S, Abeykoon M, Conradson S, Baldinozzi G, Sutar P, Mihailovic D

机构信息

Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA.

Photon Sciences Division, Brookhaven National Laboratory, Upton, NY, USA.

出版信息

Nat Commun. 2023 Nov 3;14(1):7055. doi: 10.1038/s41467-023-42631-6.

Abstract

The interaction of electrons with the lattice in metals can lead to reduction of their kinetic energy to the point where they may form heavy, dressed quasiparticles-polarons. Unfortunately, polaronic lattice distortions are difficult to distinguish from more conventional charge- and spin-ordering phenomena at low temperatures. Here we present a study of local symmetry breaking of the lattice structure on the picosecond timescale in the prototype layered dichalcogenide Mott insulator 1T-TaS using X-ray pair-distribution function measurements. We clearly identify symmetry-breaking polaronic lattice distortions at temperatures well above the ordered phases, and record the evolution of broken symmetry states from 915 K to 15 K. The data imply that charge ordering is driven by polaron crystallization into a Wigner crystal-like state, rather than Fermi surface nesting or conventional electron-phonon coupling. At intermediate temperatures the local lattice distortions are found to be consistent with a quantum spin liquid state.

摘要

电子与金属晶格的相互作用会导致其动能降低,直至可能形成重的、经修饰的准粒子——极化子。不幸的是,在低温下,极化子晶格畸变很难与更传统的电荷和自旋有序现象区分开来。在此,我们利用X射线对分布函数测量,对原型层状二硫属化物莫特绝缘体1T-TaS中皮秒时间尺度上的晶格结构局部对称性破缺进行了研究。我们清楚地识别出在远高于有序相的温度下的对称性破缺极化子晶格畸变,并记录了从915K到15K的破缺对称态的演化。数据表明,电荷有序是由极化子结晶成类似维格纳晶体的状态驱动的,而不是由费米面嵌套或传统的电子-声子耦合驱动的。在中间温度下,发现局部晶格畸变与量子自旋液体状态一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da48/10624925/2fdfdacef8f8/41467_2023_42631_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验