Ravnik Jan, Vaskivskyi Yevhenii, Vodeb Jaka, Aupič Polona, Vaskivskyi Igor, Golež Denis, Gerasimenko Yaroslav, Kabanov Viktor, Mihailovic Dragan
Dept. of Complex Matter, Jožef Stefan Institute, Ljubljana, Slovenia.
Laboratory for Micro and Nanotechnology, Paul Scherrer Institut, Villigen, PSI, Switzerland.
Nat Commun. 2021 Jun 18;12(1):3793. doi: 10.1038/s41467-021-24073-0.
Forcing systems through fast non-equilibrium phase transitions offers the opportunity to study new states of quantum matter that self-assemble in their wake. Here we study the quantum interference effects of correlated electrons confined in monolayer quantum nanostructures, created by femtosecond laser-induced quench through a first-order polytype structural transition in a layered transition-metal dichalcogenide material. Scanning tunnelling microscopy of the electrons confined within equilateral triangles, whose dimensions are a few crystal unit cells on the side, reveals that the trajectories are strongly modified from free-electron states both by electronic correlations and confinement. Comparison of experiments with theoretical predictions of strongly correlated electron behaviour reveals that the confining geometry destabilizes the Wigner/Mott crystal ground state, resulting in mixed itinerant and correlation-localized states intertwined on a length scale of 1 nm. The work opens the path toward understanding the quantum transport of electrons confined in atomic-scale monolayer structures based on correlated-electron-materials.
通过快速非平衡相变来驱动系统,为研究量子物质的新状态提供了机会,这些新状态会在相变之后自行组装。在此,我们研究了单层量子纳米结构中受限的关联电子的量子干涉效应,该结构是通过飞秒激光诱导的猝灭过程在层状过渡金属二硫族化合物材料中经历一级多型结构转变而产生的。对限制在等边三角形内的电子进行扫描隧道显微镜观察,这些三角形的边长为几个晶体单元,结果表明,电子轨迹因电子关联和限制作用而与自由电子态有很大不同。将实验结果与强关联电子行为的理论预测进行比较后发现,限制几何结构会使维格纳/莫特晶体基态失稳,从而导致在1纳米长度尺度上交织出现混合的巡游态和关联定域态。这项工作为理解基于关联电子材料的原子尺度单层结构中受限电子的量子输运开辟了道路。