Shen Che-Yung, Batoni Paolo, Yang Xilin, Li Jingxi, Liao Kun, Stack Jared, Gardner Jeff, Welch Kevin, Ozcan Aydogan
Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA.
Bioengineering Department, University of California, Los Angeles, CA, 90095, USA.
Light Sci Appl. 2025 Aug 11;14(1):267. doi: 10.1038/s41377-025-01971-2.
We present a broadband and polarization-insensitive unidirectional imager that operates at the visible part of the spectrum, where image formation occurs in one direction, while in the opposite direction, it is blocked. This approach is enabled by deep learning-driven diffractive optical design with wafer-scale nano-fabrication using high-purity fused silica to ensure optical transparency and thermal stability. Our design achieves unidirectional imaging across three visible wavelengths (covering red, green, and blue parts of the spectrum), and we experimentally validated this broadband unidirectional imager by creating high-fidelity images in the forward direction and generating weak, distorted output patterns in the backward direction, in alignment with our numerical simulations. This work demonstrates wafer-scale production of diffractive optical processors, featuring 16 levels of nanoscale phase features distributed across two axially aligned diffractive layers for visible unidirectional imaging. This approach facilitates mass-scale production of ~0.5 billion nanoscale phase features per wafer, supporting high-throughput manufacturing of hundreds to thousands of multi-layer diffractive processors suitable for large apertures and parallel processing of multiple tasks. Beyond broadband unidirectional imaging in the visible spectrum, this study establishes a pathway for artificial-intelligence-enabled diffractive optics with versatile applications, signaling a new era in optical device functionality with industrial-level, massively scalable fabrication.
我们展示了一种宽带且偏振不敏感的单向成像仪,它工作在光谱的可见光部分,在这个波段中,图像在一个方向上形成,而在相反方向上则被阻挡。这种方法是通过深度学习驱动的衍射光学设计实现的,采用高纯度熔融石英进行晶圆级纳米制造,以确保光学透明度和热稳定性。我们的设计实现了跨越三个可见波长(覆盖光谱的红、绿、蓝部分)的单向成像,并且我们通过在正向创建高保真图像以及在反向生成微弱、扭曲的输出图案,与我们的数值模拟一致,对这种宽带单向成像仪进行了实验验证。这项工作展示了衍射光学处理器的晶圆级生产,其特点是在两个轴向对齐的衍射层上分布着16级纳米级相位特征,用于可见单向成像。这种方法有助于每片晶圆大规模生产约5亿个纳米级相位特征,支持高通量制造数百到数千个适用于大孔径和多任务并行处理的多层衍射处理器。除了在可见光谱中的宽带单向成像,这项研究为具有广泛应用的人工智能驱动的衍射光学建立了一条途径,标志着光学器件功能的一个新时代,实现了工业级、大规模可扩展制造。