Cruz Daniel, Garcia Cerrillo Jose, Kumru Baris, Li Ning, Dario Perea Jose, Schmidt Bernhard V K J, Lauermann Iver, Brabec Christoph J, Antonietti Markus
Department of Colloid Chemistry , Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany.
Institute of Materials for Electronics and Energy Technology (i-MEET) , Friedrich-Alexander University Erlangen-Nürnberg , Martensstraße 7 , 91058 Erlangen , Germany.
J Am Chem Soc. 2019 Aug 7;141(31):12322-12328. doi: 10.1021/jacs.9b03639. Epub 2019 Jul 30.
Effective, solution-processable designs of interfacial electron-transporting layers (ETLs) or hole-blocking layers are promising tools in modern electronic devices, e.g., to improve the performance, cost, and stability of perovskite-based solar cells. Herein, we introduce a facile synthetic route of thiazole-modified carbon nitride with 1.5 nm thick nanosheets which can be processed to a homogeneous, metal-free ETL for inverted perovskite solar cells. We show that thiazole-modified carbon nitride enables electronic interface enhancement via suppression of charge recombination, achieving 1.09 V in and a rise to 20.17 mA/cm in . Hence, this report presents the successful implementation of a carbon-nitride-based structure to boost charge extraction from the perovskite absorber toward the electron transport layer in p-i-n devices.
有效的、可溶液加工的界面电子传输层(ETL)或空穴阻挡层设计是现代电子设备中有前景的工具,例如用于提高基于钙钛矿的太阳能电池的性能、成本和稳定性。在此,我们介绍了一种简便的合成路线,可制备出具有1.5纳米厚纳米片的噻唑修饰的氮化碳,其可加工成用于倒置钙钛矿太阳能电池的均匀无金属ETL。我们表明,噻唑修饰的氮化碳通过抑制电荷复合实现了电子界面增强,开路电压达到1.09伏,短路电流密度提高到20.17毫安/平方厘米。因此,本报告展示了基于碳氮化物的结构在p-i-n器件中成功实现增强从钙钛矿吸收层向电子传输层的电荷提取。