Suppr超能文献

大鼠和猪视神经乳头的压缩力学性能。

Compressive mechanical properties of rat and pig optic nerve head.

机构信息

Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States.

Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States.

出版信息

J Biomech. 2019 Aug 27;93:204-208. doi: 10.1016/j.jbiomech.2019.06.014. Epub 2019 Jun 28.

Abstract

Glaucoma is the leading cause of irreversible blindness worldwide. Elevated intraocular pressure (IOP), the primary risk factor for glaucoma, is thought to induce abnormally high strains in optic nerve head (ONH) tissues, which ultimately result in retinal ganglion cell damage and vision loss. The mechanisms by which excessive deformations result in vision loss remain incompletely understood. The ability of computational and in vitro models of the ONH to provide insight into these mechanisms, in many cases, depends on our ability to replicate the physiological environment, which in turn requires knowledge of tissue biomechanical properties. The majority of mechanical data published to date regarding the ONH has been obtained from tensile testing, yet compression has been shown to be the main mode of deformation in the ONH under elevated IOP. We have thus tested pig and rat ONH tissue using unconfined cyclic compression. The material constants C, obtained from fitting the stress vs. strain data with a neo-Hookean material model, were 428 [367, 488] Pa and 64 [53, 76] Pa (mean [95% Confidence Interval]) for pig and rat optic nerve head, respectively. Additionally, we investigated the effects of strain rate and tissue storage on C1 values. These data will inform future efforts to understand and replicate the in vivo biomechanical environment of the ONH.

摘要

青光眼是全球范围内导致不可逆性失明的主要原因。眼内压(IOP)升高是青光眼的主要危险因素,被认为会在视神经头部(ONH)组织中引起异常高的应变,最终导致视网膜神经节细胞损伤和视力丧失。过度变形导致视力丧失的机制仍不完全清楚。计算和体外 ONH 模型在多大程度上能够深入了解这些机制,在许多情况下取决于我们复制生理环境的能力,而这反过来又需要了解组织生物力学特性。迄今为止,有关 ONH 的大多数机械数据都是通过拉伸测试获得的,但已经表明,在升高的 IOP 下,压缩是 ONH 的主要变形模式。因此,我们使用无约束循环压缩测试了猪和大鼠的 ONH 组织。通过用新胡克弹性材料模型拟合应力与应变数据获得的材料常数 C,猪和大鼠视神经头部的 C 值分别为 428 [367, 488] Pa 和 64 [53, 76] Pa(平均值 [95%置信区间])。此外,我们还研究了应变率和组织储存对 C1 值的影响。这些数据将为未来理解和复制 ONH 的体内生物力学环境提供信息。

相似文献

1
Compressive mechanical properties of rat and pig optic nerve head.大鼠和猪视神经乳头的压缩力学性能。
J Biomech. 2019 Aug 27;93:204-208. doi: 10.1016/j.jbiomech.2019.06.014. Epub 2019 Jun 28.
3
4
Factors influencing optic nerve head biomechanics.影响视神经乳头生物力学的因素。
Invest Ophthalmol Vis Sci. 2005 Nov;46(11):4189-99. doi: 10.1167/iovs.05-0541.

引用本文的文献

6
and Are Putative Modulators of Corneoscleral Stiffness.并且是角巩膜硬度的假定调节因子。
Front Bioeng Biotechnol. 2021 Feb 5;9:596154. doi: 10.3389/fbioe.2021.596154. eCollection 2021.

本文引用的文献

8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验