Burnet Institute, Melbourne, Victoria, 3004, Australia.
Monash University, Melbourne, Victoria, 3800, Australia.
Sci Rep. 2019 Jul 16;9(1):10292. doi: 10.1038/s41598-019-46500-5.
We developed a novel series of antimalarial compounds based on a 4-cyano-3-methylisoquinoline. Our lead compound MB14 achieved modest inhibition of the growth in vitro of the human malaria parasite, Plasmodium falciparum. To identify its biological target we selected for parasites resistant to MB14. Genome sequencing revealed that all resistant parasites bore a single point S374R mutation in the sodium (Na) efflux transporter PfATP4. There are many compounds known to inhibit PfATP4 and some are under preclinical development. MB14 was shown to inhibit Na dependent ATPase activity in parasite membranes, consistent with the compound targeting PfATP4 directly. PfATP4 inhibitors cause swelling and lysis of infected erythrocytes, attributed to the accumulation of Na inside the intracellular parasites and the resultant parasite swelling. We show here that inhibitor-induced lysis of infected erythrocytes is dependent upon the parasite protein RhopH2, a component of the new permeability pathways that are induced by the parasite in the erythrocyte membrane. These pathways mediate the influx of Na into the infected erythrocyte and their suppression via RhopH2 knockdown limits the accumulation of Na within the parasite hence protecting the infected erythrocyte from lysis. This study reveals a role for the parasite-induced new permeability pathways in the mechanism of action of PfATP4 inhibitors.
我们基于 4-氰基-3-甲基异喹啉开发了一系列新型抗疟化合物。我们的先导化合物 MB14 对体外培养的人类疟原虫(Plasmodium falciparum)的生长有一定的抑制作用。为了确定其生物学靶标,我们选择了对 MB14 具有抗性的寄生虫。基因组测序显示,所有抗性寄生虫都在钠(Na)外排转运蛋白 PfATP4 中带有一个单一的 S374R 点突变。有许多已知的化合物可以抑制 PfATP4,其中一些正在进行临床前开发。MB14 被证明可以抑制寄生虫膜中的 Na 依赖性 ATP 酶活性,这与该化合物直接靶向 PfATP4 一致。PfATP4 抑制剂会导致感染红细胞肿胀和溶解,这归因于细胞内寄生虫内 Na 的积累以及由此导致的寄生虫肿胀。我们在这里表明,抑制剂诱导的感染红细胞溶解依赖于寄生虫蛋白 RhopH2,这是寄生虫在红细胞膜中诱导的新通透性途径的一个组成部分。这些途径介导 Na 流入感染的红细胞,通过 RhopH2 敲低抑制它们的流入可以限制 Na 在寄生虫内的积累,从而保护感染的红细胞免受溶解。这项研究揭示了寄生虫诱导的新通透性途径在 PfATP4 抑制剂作用机制中的作用。