Suppr超能文献

富含铁的磷酸盐和碳酸盐在微生物细胞及胞外聚合物上的成核作用。

Nucleation of Fe-rich phosphates and carbonates on microbial cells and exopolymeric substances.

作者信息

Sánchez-Román Mónica, Puente-Sánchez Fernando, Parro Víctor, Amils Ricardo

机构信息

Department of Planetology and Habitability, Centro de Astrobiología (INTA-CSIC) Madrid, Spain.

Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC) Madrid, Spain.

出版信息

Front Microbiol. 2015 Sep 22;6:1024. doi: 10.3389/fmicb.2015.01024. eCollection 2015.

Abstract

Although phosphate and carbonate are important constituents in ancient and modern environments, it is not yet clear their biogeochemical relationships and their mechanisms of formation. Microbially mediated carbonate formation has been widely studied whereas little is known about the formation of phosphate minerals. Here we report that a new bacterial strain, Tessarococcus lapidicaptus, isolated from the subsurface of Rio Tinto basin (Huelva, SW Spain), is capable of precipitating Fe-rich phosphate and carbonate minerals. We observed morphological differences between phosphate and carbonate, which may help us to recognize these minerals in terrestrial and extraterrestrial environments. Finally, considering the scarcity and the unequal distribution and preservation patterns of phosphate and carbonates, respectively, in the geological record and the biomineralization process that produces those minerals, we propose a hypothesis for the lack of Fe-phosphates in natural environments and ancient rocks.

摘要

尽管磷酸盐和碳酸盐在古代和现代环境中都是重要的成分,但它们的生物地球化学关系及其形成机制尚不清楚。微生物介导的碳酸盐形成已得到广泛研究,而关于磷酸盐矿物的形成却知之甚少。在此,我们报告从力拓盆地(西班牙西南部韦尔瓦)地下分离出的一种新细菌菌株——石质球菌(Tessarococcus lapidicaptus),能够沉淀富含铁的磷酸盐和碳酸盐矿物。我们观察到了磷酸盐和碳酸盐之间的形态差异,这可能有助于我们在地球和外星环境中识别这些矿物。最后,考虑到地质记录中磷酸盐和碳酸盐分别存在稀缺性以及分布和保存模式不均等情况,以及产生这些矿物的生物矿化过程,我们针对自然环境和古代岩石中缺乏铁磷酸盐的现象提出了一个假设。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bc0/4585095/ee13a5ea1373/fmicb-06-01024-g0001.jpg

相似文献

1
Nucleation of Fe-rich phosphates and carbonates on microbial cells and exopolymeric substances.
Front Microbiol. 2015 Sep 22;6:1024. doi: 10.3389/fmicb.2015.01024. eCollection 2015.
3
Biomineralization of carbonate and phosphate by moderately halophilic bacteria.
FEMS Microbiol Ecol. 2007 Aug;61(2):273-84. doi: 10.1111/j.1574-6941.2007.00336.x. Epub 2007 May 29.
5
Influence of exopolymeric materials on bacterially induced mineralization of carbonates.
Appl Biochem Biotechnol. 2015 Apr;175(7):3531-41. doi: 10.1007/s12010-015-1524-3. Epub 2015 Feb 5.
6
Microbial Mg-rich Carbonates in an Extreme Alkaline Lake (Las Eras, Central Spain).
Front Microbiol. 2019 Feb 7;10:148. doi: 10.3389/fmicb.2019.00148. eCollection 2019.
7
A carbonate-rich lake solution to the phosphate problem of the origin of life.
Proc Natl Acad Sci U S A. 2020 Jan 14;117(2):883-888. doi: 10.1073/pnas.1916109117. Epub 2019 Dec 30.
9
Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria.
Geobiology. 2009 Jun;7(3):373-84. doi: 10.1111/j.1472-4669.2009.00203.x.

引用本文的文献

1
Spectral Detection of Nanophase Iron Minerals Produced by Fe(III)-Reducing Hyperthermophilic Crenarchaea.
Astrobiology. 2023 Jan;23(1):43-59. doi: 10.1089/ast.2022.0042. Epub 2022 Sep 7.
5
Understanding and creating biocementing beachrocks via biostimulation of indigenous microbial communities.
Appl Microbiol Biotechnol. 2020 Apr;104(8):3655-3673. doi: 10.1007/s00253-020-10474-6. Epub 2020 Feb 24.
6
Biotransformation of Scheelite CaWO by the Extreme Thermoacidophile : Tungsten-Microbial Interface.
Front Microbiol. 2019 Jul 2;10:1492. doi: 10.3389/fmicb.2019.01492. eCollection 2019.
8
Microbial Mg-rich Carbonates in an Extreme Alkaline Lake (Las Eras, Central Spain).
Front Microbiol. 2019 Feb 7;10:148. doi: 10.3389/fmicb.2019.00148. eCollection 2019.
9
Biomineralization and Bioaccumulation of Europium by a Thermophilic Metal Resistant Bacterium.
Front Microbiol. 2019 Jan 30;10:81. doi: 10.3389/fmicb.2019.00081. eCollection 2019.
10
Draft Genome Sequence of the Deep-Subsurface Actinobacterium Tessaracoccus lapidicaptus IPBSL-7T.
Genome Announc. 2016 Sep 29;4(5):e01078-16. doi: 10.1128/genomeA.01078-16.

本文引用的文献

1
Tessaracoccus lapidicaptus sp. nov., an actinobacterium isolated from the deep subsurface of the Iberian pyrite belt.
Int J Syst Evol Microbiol. 2014 Oct;64(Pt 10):3546-3552. doi: 10.1099/ijs.0.060038-0. Epub 2014 Jul 22.
2
Are iron-phosphate minerals a sink for phosphorus in anoxic Black Sea sediments?
PLoS One. 2014 Jul 2;9(7):e101139. doi: 10.1371/journal.pone.0101139. eCollection 2014.
5
Sequestration of Martian CO2 by mineral carbonation.
Nat Commun. 2013;4:2662. doi: 10.1038/ncomms3662.
7
Specific jarosite biomineralization by Purpureocillium lilacinum, an acidophilic fungi isolated from Río Tinto.
Environ Microbiol. 2013 Aug;15(8):2228-37. doi: 10.1111/1462-2920.12094. Epub 2013 Feb 21.
10
The role of microbes in the formation of modern and ancient phosphatic mineral deposits.
Front Microbiol. 2012 Jul 5;3:241. doi: 10.3389/fmicb.2012.00241. eCollection 2012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验