Kabir Mohammad Pabel, Orozco-Gonzalez Yoelvis, Gozem Samer
Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA.
Phys Chem Chem Phys. 2019 Aug 14;21(30):16526-16537. doi: 10.1039/c9cp02230a. Epub 2019 Jul 17.
Flavins are versatile molecules due to their ability to exist in multiple redox and protonation states. At physiological conditions, they are usually encountered either as oxidized quinones, neutral semiquinones, anionic semiquinones, neutral hydroquinones, or anionic hydroquinones. We compute the electronic near-UV/vis spectra for flavin in each of these five states. Specifically, we compute vertical, adiabatic, and vibronic excitations for all excited states that have wavelengths longer than 300 nm. We employ the calculations to assign the peaks in the corresponding experimental UV/vis spectra from literature. We also compare the effect of polar and non-polar solvents on the spectra using a polarizable continuum model. Finally, we construct "electrostatic spectral tuning maps" for prominent peaks in each of the five states. These maps qualitatively describe how the flavin electronic spectra will be shifted by an anisotropic electrostatic environment such as a protein. Understanding how flavin's UV/vis absorption spectrum is modulated by its environment can aid in experiments employing flavin as a probe of internal electrostatics of a protein and in engineering new color variants of flavoproteins.
黄素是一种多功能分子,因为它们能够以多种氧化还原和质子化状态存在。在生理条件下,它们通常以氧化醌、中性半醌、阴离子半醌、中性对苯二酚或阴离子对苯二酚的形式出现。我们计算了黄素在这五种状态下的电子近紫外/可见光谱。具体来说,我们计算了所有波长大于300 nm的激发态的垂直、绝热和振动激发。我们利用这些计算结果来确定文献中相应实验紫外/可见光谱中的峰。我们还使用可极化连续介质模型比较了极性和非极性溶剂对光谱的影响。最后,我们为这五种状态下的突出峰构建了“静电光谱调谐图”。这些图定性地描述了黄素电子光谱将如何被诸如蛋白质这样的各向异性静电环境所移动。了解黄素的紫外/可见吸收光谱如何被其环境调制,有助于将黄素用作蛋白质内部静电探针的实验,以及设计黄素蛋白的新颜色变体。