Suppr超能文献

儿科心脏病学中的人工智能:一项范围综述。

Artificial Intelligence in Pediatric Cardiology: A Scoping Review.

作者信息

Sethi Yashendra, Patel Neil, Kaka Nirja, Desai Ami, Kaiwan Oroshay, Sheth Mili, Sharma Rupal, Huang Helen, Chopra Hitesh, Khandaker Mayeen Uddin, Lashin Maha M A, Hamd Zuhal Y, Emran Talha Bin

机构信息

PearResearch, Dehradun 248001, India.

Department of Medicine, Government Doon Medical College, Dehradun 248001, India.

出版信息

J Clin Med. 2022 Nov 29;11(23):7072. doi: 10.3390/jcm11237072.

Abstract

The evolution of AI and data science has aided in mechanizing several aspects of medical care requiring critical thinking: diagnosis, risk stratification, and management, thus mitigating the burden of physicians and reducing the likelihood of human error. AI modalities have expanded feet to the specialty of pediatric cardiology as well. We conducted a scoping review searching the Scopus, Embase, and PubMed databases covering the recent literature between 2002-2022. We found that the use of neural networks and machine learning has significantly improved the diagnostic value of cardiac magnetic resonance imaging, echocardiograms, computer tomography scans, and electrocardiographs, thus augmenting the clinicians' diagnostic accuracy of pediatric heart diseases. The use of AI-based prediction algorithms in pediatric cardiac surgeries improves postoperative outcomes and prognosis to a great extent. Risk stratification and the prediction of treatment outcomes are feasible using the key clinical findings of each CHD with appropriate computational algorithms. Notably, AI can revolutionize prenatal prediction as well as the diagnosis of CHD using the EMR (electronic medical records) data on maternal risk factors. The use of AI in the diagnostics, risk stratification, and management of CHD in the near future is a promising possibility with current advancements in machine learning and neural networks. However, the challenges posed by the dearth of appropriate algorithms and their nascent nature, limited physician training, fear of over-mechanization, and apprehension of missing the 'human touch' limit the acceptability. Still, AI proposes to aid the clinician tomorrow with precision cardiology, paving a way for extremely efficient human-error-free health care.

摘要

人工智能和数据科学的发展有助于将医疗护理中需要批判性思维的几个方面机械化

诊断、风险分层和管理,从而减轻医生的负担并降低人为错误的可能性。人工智能模式也已涉足小儿心脏病学领域。我们进行了一项范围综述,检索了Scopus、Embase和PubMed数据库,涵盖2002年至2022年的近期文献。我们发现,神经网络和机器学习的应用显著提高了心脏磁共振成像、超声心动图、计算机断层扫描和心电图的诊断价值,从而提高了临床医生对小儿心脏病的诊断准确性。基于人工智能的预测算法在小儿心脏手术中的应用在很大程度上改善了术后结果和预后。利用每种先天性心脏病的关键临床发现和适当的计算算法进行风险分层和治疗结果预测是可行的。值得注意的是,人工智能可以利用关于母亲风险因素的电子病历(EMR)数据彻底改变产前预测以及先天性心脏病的诊断。随着机器学习和神经网络的当前进展,在不久的将来,人工智能在先天性心脏病的诊断、风险分层和管理中的应用是一个很有前景的可能性。然而,缺乏合适的算法及其新生性质、医生培训有限、对过度机械化的担忧以及对失去“人情味”的担忧所带来的挑战限制了其可接受性。尽管如此,人工智能有望在未来通过精准心脏病学帮助临床医生,为极其高效且无人为错误的医疗保健铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/237e/9738645/3694d575a1ca/jcm-11-07072-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验