Schöneborn Hendrik, Raudzus Fabian, Secret Emilie, Otten Nils, Michel Aude, Fresnais Jérome, Ménager Christine, Siaugue Jean-Michel, Zaehres Holm, Dietzel Irmgard D, Heumann Rolf
Department of Biochemistry II-Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany.
Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, Sorbonne Université, CNRS, F-75005 Paris, France.
J Funct Biomater. 2019 Jul 16;10(3):32. doi: 10.3390/jfb10030032.
Parkinson's disease (PD) is a neurodegenerative disease associated with loss or dysfunction of dopaminergic neurons located in the substantia nigra (SN), and there is no cure available. An emerging new approach for treatment is to transplant human induced dopaminergic neurons directly into the denervated striatal brain target region. Unfortunately, neurons grafted into the substantia nigra are unable to grow axons into the striatum and thus do not allow recovery of the original connectivity. Towards overcoming this general limitation in guided neuronal regeneration, we develop here magnetic nanoparticles functionalized with proteins involved in the regulation of axonal growth. We show covalent binding of constitutive active human rat sarcoma (RAS) proteins or RAS guanine nucleotide exchange factor catalytic domain of son of sevenless (SOS) by fluorescence correlation spectroscopy and multiangle light scattering as well as the characterization of exchange factor activity. Human dopaminergic neurons were differentiated from neural precursor cells and characterized by electrophysiological and immune histochemical methods. Furthermore, we demonstrate magnetic translocation of cytoplasmic γ-FeO@SiO core-shell nanoparticles into the neurite extensions of induced human neurons. Altogether, we developed tools towards remote control of directed neurite growth in human dopaminergic neurons. These results may have relevance for future therapeutic approaches of cell replacement therapy in Parkinson's disease.
帕金森病(PD)是一种神经退行性疾病,与位于黑质(SN)的多巴胺能神经元的丧失或功能障碍有关,目前尚无治愈方法。一种新兴的治疗方法是将人诱导的多巴胺能神经元直接移植到去神经支配的纹状体脑靶区域。不幸的是,移植到黑质的神经元无法将轴突生长到纹状体中,因此无法恢复原来的连接性。为了克服引导神经元再生中的这一普遍限制,我们在此开发了用参与轴突生长调节的蛋白质功能化的磁性纳米颗粒。我们通过荧光相关光谱法和多角度光散射展示了组成型活性人大鼠肉瘤(RAS)蛋白或七号less之子(SOS)的RAS鸟嘌呤核苷酸交换因子催化结构域的共价结合,以及交换因子活性的表征。人多巴胺能神经元从神经前体细胞分化而来,并通过电生理和免疫组织化学方法进行表征。此外,我们证明了细胞质γ-FeO@SiO核壳纳米颗粒向诱导的人神经元的神经突延伸中的磁性转运。总之,我们开发了用于远程控制人多巴胺能神经元中定向神经突生长的工具。这些结果可能与帕金森病未来的细胞替代治疗方法相关。