IEEE J Biomed Health Inform. 2019 Jul;23(4):1417-1426. doi: 10.1109/JBHI.2019.2899403. Epub 2019 Feb 14.
Glaucoma is a serious ocular disorder for which the screening and diagnosis are carried out by the examination of the optic nerve head (ONH). The color fundus image (CFI) is the most common modality used for ocular screening. In CFI, the central region which is the optic disc and the optic cup region within the disc are examined to determine one of the important cues for glaucoma diagnosis called the optic cup-to-disc ratio (CDR). CDR calculation requires accurate segmentation of optic disc and cup. Another important cue for glaucoma progression is the variation of depth in ONH region. In this paper, we first propose a deep learning framework to estimate depth from a single fundus image. For the case of monocular retinal depth estimation, we are also plagued by the labeled data insufficiency. To overcome this problem we adopt the technique of pretraining the deep network where, instead of using a denoising autoencoder, we propose a new pretraining scheme called pseudo-depth reconstruction, which serves as a proxy task for retinal depth estimation. Empirically, we show pseudo-depth reconstruction to be a better proxy task than denoising. Our results outperform the existing techniques for depth estimation on the INSPIRE dataset. To extend the use of depth map for optic disc and cup segmentation, we propose a novel fully convolutional guided network, where, along with the color fundus image the network uses the depth map as a guide. We propose a convolutional block called multimodal feature extraction block to extract and fuse the features of the color image and the guide image. We extensively evaluate the proposed segmentation scheme on three datasets- ORIGA, RIMONEr3, and DRISHTI-GS. The performance of the method is comparable and in many cases, outperforms the most recent state of the art.
青光眼是一种严重的眼部疾病,其筛查和诊断是通过视神经头(ONH)的检查来进行的。眼底彩色图像(CFI)是最常用的眼部筛查方式。在 CFI 中,检查的是视盘的中央区域和视盘中的视杯区域,以确定青光眼诊断的一个重要线索,即视杯与视盘的比例(CDR)。CDR 的计算需要对视盘和视杯进行准确的分割。青光眼进展的另一个重要线索是 ONH 区域深度的变化。在本文中,我们首先提出了一种基于深度学习的方法来从单个眼底图像估计深度。对于单眼视网膜深度估计,我们也受到标记数据不足的困扰。为了克服这个问题,我们采用了深度网络预训练的技术,在这种技术中,我们不是使用去噪自动编码器,而是提出了一种新的预训练方案,称为伪深度重建,它可以作为视网膜深度估计的代理任务。从经验上看,我们发现伪深度重建比去噪更适合作为代理任务。我们的结果在 INSPIRE 数据集上优于现有的深度估计技术。为了扩展深度图在视盘和视杯分割中的使用,我们提出了一种新的全卷积引导网络,该网络除了使用彩色眼底图像外,还使用深度图作为指导。我们提出了一种称为多模态特征提取块的卷积块,用于提取和融合彩色图像和指导图像的特征。我们在三个数据集-ORIGA、RIMONEr3 和 DRISHTI-GS 上对提出的分割方案进行了广泛评估。该方法的性能与最新的最先进技术相当,在许多情况下甚至优于最新的最先进技术。