Suppr超能文献

利用索赔数据研究医疗保险中因心脏病发作住院后的死亡率趋势。

Using claims data to examine mortality trends following hospitalization for heart attack in Medicare.

作者信息

Ash Arlene S, Posner Michael A, Speckman Jeanne, Franco Shakira, Yacht Andrew C, Bramwell Lindsey

机构信息

Health Care Research Unit, Boston University School of Medicine, MA 02118, USA.

出版信息

Health Serv Res. 2003 Oct;38(5):1253-62. doi: 10.1111/1475-6773.00175.

Abstract

OBJECTIVE

To see if changes in the demographics and illness burden of Medicare patients hospitalized for acute myocardial infarction (AMI) from 1995 through 1999 can explain an observed rise (from 32 percent to 34 percent) in one-year mortality over that period.

DATA SOURCES

Utilization data from the Centers for Medicare and Medicaid Services (CMS) fee-for-service claims (MedPAR, Outpatient, and Carrier Standard Analytic Files); patient demographics and date of death from CMS Denominator and Vital Status files. For over 1.5 million AMI discharges in 1995-1999 we retain diagnoses from one year prior, and during, the case-defining admission.

STUDY DESIGN

We fit logistic regression models to predict one-year mortality for the 1995 cases and apply them to 1996-1999 files. The CORE model uses age, sex, and original reason for Medicare entitlement to predict mortality. Three other models use the CORE variables plus morbidity indicators from well-known morbidity classification methods (Charlson, DCG, and AHRQ's CCS). Regressions were used as is--without pruning to eliminate clinical or statistical anomalies. Each model references the same diagnoses--those recorded during the pre- and index admission periods. We compare each model's ability to predict mortality and use each to calculate risk-adjusted mortality in 1996-1999.

PRINCIPAL FINDINGS

The comprehensive morbidity classifications (DCG and CCS) led to more accurate predictions than the Charlson, which dominated the CORE model (validated C-statistics: 0.81, 0.82, 0.74, and 0.66, respectively). Using the CORE model for risk adjustment reduced, but did not eliminate, the mortality increase. In contrast, adjustment using any of the morbidity models produced essentially flat graphs.

CONCLUSIONS

Prediction models based on claims-derived demographics and morbidity profiles can be extremely accurate. While one-year post-AMI mortality in Medicare may not be worsening, outcomes appear not to have continued to improve as they had in the prior decade. Rich morbidity information is available in claims data, especially when longitudinally tracked across multiple settings of care, and is important in setting performance targets and evaluating trends.

摘要

目的

研究1995年至1999年因急性心肌梗死(AMI)住院的医疗保险患者的人口统计学和疾病负担变化,能否解释这一时期观察到的一年死亡率上升情况(从32%升至34%)。

数据来源

医疗保险和医疗补助服务中心(CMS)按服务收费索赔数据(医疗住院患者分析记录、门诊和承运人标准分析文件);来自CMS分母和生命状态文件的患者人口统计学信息及死亡日期。对于1995 - 1999年超过150万例AMI出院病例,我们保留病例定义入院前一年及入院期间的诊断信息。

研究设计

我们拟合逻辑回归模型来预测1995年病例的一年死亡率,并将其应用于1996 - 1999年的文件。核心模型使用年龄、性别和医疗保险资格的原始原因来预测死亡率。其他三个模型使用核心变量加上来自知名疾病分类方法(Charlson、DCG和AHRQ的CCS)的发病率指标。回归分析按原样使用,未进行修剪以消除临床或统计异常情况。每个模型参考相同的诊断信息,即入院前和索引入院期间记录的信息。我们比较每个模型预测死亡率的能力,并使用每个模型计算1996 - 1999年的风险调整死亡率。

主要发现

综合疾病分类(DCG和CCS)比主导核心模型的Charlson分类能做出更准确的预测(验证后的C统计量分别为:0.81、0.82、0.74和0.66)。使用核心模型进行风险调整降低了,但并未消除死亡率的上升。相比之下,使用任何发病率模型进行调整后得出的图表基本呈平稳状态。

结论

基于索赔得出的人口统计学和疾病概况的预测模型可能极其准确。虽然医疗保险中AMI后一年的死亡率可能没有恶化,但结果似乎没有像前十年那样持续改善。索赔数据中可获得丰富的疾病信息,特别是在跨多个护理环境进行纵向跟踪时,这对于设定绩效目标和评估趋势很重要。

相似文献

9
Do hospitals provide lower quality care on weekends?医院在周末提供的护理质量会更低吗?
Health Serv Res. 2007 Aug;42(4):1589-612. doi: 10.1111/j.1475-6773.2006.00663.x.
10
The Hospital Compare mortality model and the volume-outcome relationship.医院比较死亡率模型与量效关系。
Health Serv Res. 2010 Oct;45(5 Pt 1):1148-67. doi: 10.1111/j.1475-6773.2010.01130.x.

引用本文的文献

1
Cost-Effectiveness of Cardiac Rehabilitation in Older Adults With Coronary Heart Disease.老年冠心病患者心脏康复的成本效益
J Cardiopulm Rehabil Prev. 2024 Mar 1;44(2):107-114. doi: 10.1097/HCR.0000000000000827. Epub 2023 Oct 4.
3
High-frequency hospital users: The tail that wags the readmissions dog.高频住院患者:导致再入院的“尾巴”。
Health Serv Res. 2022 Jun;57(3):579-586. doi: 10.1111/1475-6773.13677. Epub 2021 Jun 1.
8
Mental Health Risk Adjustment with Clinical Categories and Machine Learning.精神健康风险调整与临床类别和机器学习。
Health Serv Res. 2018 Aug;53 Suppl 1(Suppl Suppl 1):3189-3206. doi: 10.1111/1475-6773.12818. Epub 2017 Dec 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验