Pan Wenlin, Dahlquist Frederick W, Hazelbauer Gerald L
Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211.
Department of Chemistry and Biochemistry and Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, 93106-9510.
Protein Sci. 2017 Aug;26(8):1535-1546. doi: 10.1002/pro.3179. Epub 2017 May 8.
Autophosphorylating histidine kinase CheA is central to signaling in bacterial chemotaxis. The kinase donates its phosphoryl group to two response regulators, CheY that controls flagellar rotation and thus motility and CheB, crucial for sensory adaptation. As measured by coupled CheY phosphorylation, incorporation into signaling complexes activates the kinase ∼1000-fold and places it under control of chemoreceptors. By the same assay, receptors modulate kinase activity ∼100-fold as a function of receptor ligand occupancy and adaptational modification. These changes are the essence of chemotactic signaling. Yet, the enzymatic properties affected by incorporation into signaling complexes, by chemoreceptor ligand binding or by receptor adaptational modification are largely undefined. To investigate, we performed steady-state kinetic analysis of autophosphorylation using a liberated kinase phosphoryl-accepting domain, characterizing kinase alone, in isolated core signaling complexes and in small arrays of core complexes assembled in vitro with receptors contained in isolated native membranes. Autophosphorylation in signaling complexes was measured as a function of ligand occupancy and adaptational modification. Activation by incorporation into signaling complexes and modulation in complexes by ligand occupancy and adaptational modification occurred largely via changes in the apparent catalytic rate constant (k ). Changes in the autophosphorylation k accounted for most of the ∼1000-fold kinase activation in signaling complexes observed for coupled CheY phosphorylation, and the ∼100-fold inhibition by ligand occupancy or modulation by adaptational modification. Our results indicate no more than a minor role in kinase control for simple sequestration of the autophosphorylation substrate. Instead they indicate direct effects on the active site.
自身磷酸化组氨酸激酶CheA是细菌趋化作用信号传导的核心。该激酶将其磷酸基团转移给两种应答调节蛋白,即控制鞭毛旋转从而控制运动性的CheY和对感觉适应至关重要的CheB。通过偶联的CheY磷酸化测量,掺入信号复合物可使激酶激活约1000倍,并使其受化学感受器的控制。通过相同的测定方法,受体根据受体配体占据情况和适应性修饰调节激酶活性约100倍。这些变化是趋化信号传导的本质。然而,受掺入信号复合物、化学感受器配体结合或受体适应性修饰影响的酶促性质在很大程度上尚不清楚。为了进行研究,我们使用游离的激酶磷酸接受结构域对自身磷酸化进行了稳态动力学分析,分别表征了单独的激酶、分离的核心信号复合物中的激酶以及在体外与分离的天然膜中所含受体组装的核心复合物小阵列中的激酶。测量了信号复合物中自身磷酸化作为配体占据情况和适应性修饰的函数。通过掺入信号复合物的激活以及复合物中配体占据和适应性修饰的调节主要是通过表观催化速率常数(k)的变化发生的。自身磷酸化k的变化占偶联CheY磷酸化时信号复合物中观察到的约1000倍激酶激活以及配体占据引起的约100倍抑制或适应性修饰调节的大部分。我们的结果表明,自身磷酸化底物的简单隔离在激酶控制中作用不大。相反,它们表明对活性位点有直接影响。