Suppr超能文献

STEFTR:一种用于从动物行为轨迹进行状态估计和特征提取的混合通用方法。

STEFTR: A Hybrid Versatile Method for State Estimation and Feature Extraction From the Trajectory of Animal Behavior.

作者信息

Yamazaki Shuhei J, Ohara Kazuya, Ito Kentaro, Kokubun Nobuo, Kitanishi Takuma, Takaichi Daisuke, Yamada Yasufumi, Ikejiri Yosuke, Hiramatsu Fumie, Fujita Kosuke, Tanimoto Yuki, Yamazoe-Umemoto Akiko, Hashimoto Koichi, Sato Katsufumi, Yoda Ken, Takahashi Akinori, Ishikawa Yuki, Kamikouchi Azusa, Hiryu Shizuko, Maekawa Takuya, Kimura Koutarou D

机构信息

Graduate School of Science, Osaka University, Toyonaka, Japan.

Graduate School of Natural Sciences, Nagoya City University, Nagoya, Japan.

出版信息

Front Neurosci. 2019 Jun 28;13:626. doi: 10.3389/fnins.2019.00626. eCollection 2019.

Abstract

Animal behavior is the final and integrated output of brain activity. Thus, recording and analyzing behavior is critical to understand the underlying brain function. While recording animal behavior has become easier than ever with the development of compact and inexpensive devices, detailed behavioral data analysis requires sufficient prior knowledge and/or high content data such as video images of animal postures, which makes it difficult for most of the animal behavioral data to be efficiently analyzed. Here, we report a versatile method using a hybrid supervised/unsupervised machine learning approach for behavioral ate stimation and eature exaction (STEFTR) only from low-content animal trajectory data. To demonstrate the effectiveness of the proposed method, we analyzed trajectory data of worms, fruit flies, rats, and bats in the laboratories, and penguins and flying seabirds in the wild, which were recorded with various methods and span a wide range of spatiotemporal scales-from mm to 1,000 km in space and from sub-seconds to days in time. We successfully estimated several states during behavior and comprehensively extracted characteristic features from a behavioral state and/or a specific experimental condition. Physiological and genetic experiments in worms revealed that the extracted behavioral features reflected specific neural or gene activities. Thus, our method provides a versatile and unbiased way to extract behavioral features from simple trajectory data to understand brain function.

摘要

动物行为是大脑活动的最终综合输出。因此,记录和分析行为对于理解潜在的大脑功能至关重要。随着紧凑且廉价设备的发展,记录动物行为变得比以往任何时候都更容易,然而,详细的行为数据分析需要足够的先验知识和/或高含量数据,如动物姿势的视频图像,这使得大多数动物行为数据难以得到有效分析。在此,我们报告一种通用方法,该方法使用混合监督/无监督机器学习方法,仅从低含量动物轨迹数据中进行行为状态估计和特征提取(STEFTR)。为了证明所提方法的有效性,我们分析了实验室中蠕虫、果蝇、大鼠和蝙蝠以及野外企鹅和海鸟的轨迹数据,这些数据通过各种方法记录,涵盖了广泛的时空尺度——空间上从毫米到1000千米,时间上从亚秒到数天。我们成功估计了行为过程中的几种状态,并从行为状态和/或特定实验条件中全面提取了特征。蠕虫的生理和遗传实验表明,提取的行为特征反映了特定的神经或基因活动。因此,我们的方法提供了一种通用且无偏差的方式,可从简单轨迹数据中提取行为特征以理解大脑功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2181/6611002/741081ace35d/fnins-13-00626-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验