Graduate School of Information Science and Technology, Osaka University, Osaka, Japan.
Graduate School of Life Science, Hokkaido University, Hokkaido, Japan.
Nat Commun. 2020 Oct 20;11(1):5316. doi: 10.1038/s41467-020-19105-0.
A comparative analysis of animal behavior (e.g., male vs. female groups) has been widely used to elucidate behavior specific to one group since pre-Darwinian times. However, big data generated by new sensing technologies, e.g., GPS, makes it difficult for them to contrast group differences manually. This study introduces DeepHL, a deep learning-assisted platform for the comparative analysis of animal movement data, i.e., trajectories. This software uses a deep neural network based on an attention mechanism to automatically detect segments in trajectories that are characteristic of one group. It then highlights these segments in visualized trajectories, enabling biologists to focus on these segments, and helps them reveal the underlying meaning of the highlighted segments to facilitate formulating new hypotheses. We tested the platform on a variety of trajectories of worms, insects, mice, bears, and seabirds across a scale from millimeters to hundreds of kilometers, revealing new movement features of these animals.
自达尔文时代以来,人们广泛地采用动物行为(例如雄性与雌性群体)的比较分析来阐明特定于某一群体的行为。然而,新的传感技术(例如 GPS)生成的大数据使得手动对比群体差异变得困难。本研究介绍了 DeepHL,这是一个用于动物运动数据(即轨迹)比较分析的深度学习辅助平台。该软件使用基于注意力机制的深度神经网络自动检测轨迹中属于某一组的特征段。然后,它在可视化轨迹中突出显示这些段,使生物学家能够专注于这些段,并帮助他们揭示突出段的潜在含义,以促进提出新的假设。我们在从毫米到数百公里的各种尺度上对蠕虫、昆虫、老鼠、熊和海鸟的轨迹进行了平台测试,揭示了这些动物的新运动特征。