Suppr超能文献

拟合指数是否用于检验偏向精神病理学结构?一项模拟研究。

Are fit indices used to test psychopathology structure biased? A simulation study.

机构信息

Department of Psychology.

Centre for Emotional Health.

出版信息

J Abnorm Psychol. 2019 Oct;128(7):740-764. doi: 10.1037/abn0000434. Epub 2019 Jul 18.

Abstract

Structural models of psychopathology provide dimensional alternatives to traditional categorical classification systems. Competing models, such as the bifactor and correlated factors models, are typically compared via statistical indices to assess how well each model fits the same data. However, simulation studies have found evidence for probifactor fit index bias in several psychological research domains. The present study sought to extend this research to models of psychopathology, wherein the bifactor model has received much attention, but its susceptibility to bias is not well characterized. We used Monte Carlo simulations to examine how various model misspecifications produced fit index bias for 2 commonly used estimators, WLSMV and MLR. We simulated binary indicators to represent psychiatric diagnoses and positively skewed continuous indicators to represent symptom counts. Across combinations of estimators, indicator distributions, and misspecifications, complex patterns of bias emerged, with fit indices more often than not failing to correctly identify the correlated factors model as the data-generating model. No fit index emerged as reliably unbiased across all misspecification scenarios. Although, tests of model equivalence indicated that in one instance fit indices were not biased-they favored the bifactor model, albeit not unfairly. Overall, results suggest that comparisons of bifactor models to alternatives using fit indices may be misleading and call into question the evidentiary meaning of previous studies that identified the bifactor model as superior based on fit. We highlight the importance of comparing models based on substantive interpretability and their utility for addressing study aims, the methodological significance of model equivalence, as well as the need for implementation of statistical metrics that evaluate model quality. (PsycINFO Database Record (c) 2019 APA, all rights reserved).

摘要

心理病理学的结构模型为传统的分类系统提供了维度替代方案。竞争模型,如双因素和相关因素模型,通常通过统计指标进行比较,以评估每个模型如何拟合相同的数据。然而,模拟研究在几个心理研究领域发现了概率因子拟合指数偏差的证据。本研究旨在将这一研究扩展到心理病理学模型,其中双因素模型受到了广泛关注,但它的偏差敏感性尚未得到很好的描述。我们使用蒙特卡罗模拟来研究各种模型误设如何产生两种常用估计量(WLSMV 和 MLR)的拟合指数偏差。我们模拟了二进制指标来表示精神科诊断,以及偏态正的连续指标来表示症状计数。在估计量、指标分布和误设的组合中,出现了复杂的偏差模式,拟合指数往往不能正确识别相关因素模型是数据生成模型。没有一个拟合指数在所有误设情况下都表现出可靠的无偏差。虽然,模型等效性检验表明,在一种情况下,拟合指数没有偏差——它们倾向于双因素模型,尽管不是不公平的。总的来说,结果表明,使用拟合指数比较双因素模型和替代模型可能会产生误导,并质疑以前基于拟合确定双因素模型更优越的研究的证据意义。我们强调了基于实质性可解释性和它们在满足研究目标方面的效用来比较模型的重要性,以及模型等效性的方法学意义,以及需要实施评估模型质量的统计指标。(PsycINFO 数据库记录(c)2019 APA,保留所有权利)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验