Suppr超能文献

无概率因子模型拟合指数偏差,但有倾向于选择最佳模型的趋势。

No probifactor model fit index bias, but a propensity toward selecting the best model.

机构信息

Department of Psychological Research Methods, Institute of Psychology and Education, Ulm University.

出版信息

J Psychopathol Clin Sci. 2022 Aug;131(6):689-695. doi: 10.1037/abn0000685.

Abstract

Based on an extensive Monte Carlo simulation study, Greene et al. (2019) investigated the behavior of various measures of model fit for competing types of confirmatory factor analysis models of psychopathology, the correlated factors model and the bifactor model. Greene et al. (2019) found that fit indices mostly favored a bifactor model over a correlated factors model, which led to the conclusion of a "probifactor fit index bias." Here we show that this conclusion is misleading as far as conditions without complexities in the data-generating model are concerned and in fact incorrect in conditions with complexities (cross-loadings or correlated residuals) in the data-generating model. Specifically, we demonstrate that the very same data Greene et al. (2019) generated from a correlated three-factor model can be likewise obtained from a higher-order or a bifactor model, so that there is no basis for maintaining that the "true" to-be recovered model conformed to a correlated factors structure. Moreover, we show that a standard bifactor model was factually closer aligned with the data generated in conditions with added complexities. As such, fit indices necessarily and correctly favored the bifactor model in most conditions. We explain the observed behavior of several fit indices, thereby showing that the results were not characterized by bias, but were in fact in line with the expected and desired behavior. (PsycInfo Database Record (c) 2022 APA, all rights reserved).

摘要

基于广泛的蒙特卡罗模拟研究,Greene 等人(2019 年)调查了各种模型拟合度量对于竞争类型的精神病理学验证性因素分析模型(相关因素模型和双因素模型)的行为。Greene 等人(2019 年)发现,拟合指数大多倾向于双因素模型而不是相关因素模型,这导致了“双因素拟合指数偏差”的结论。在这里,我们表明,就没有数据生成模型复杂性的情况而言,这一结论是误导性的,而在数据生成模型存在复杂性(交叉负荷或相关残差)的情况下,这一结论实际上是不正确的。具体来说,我们证明,Greene 等人(2019 年)从相关的三因素模型生成的相同数据同样可以从高阶模型或双因素模型中获得,因此,没有理由认为“真实”要恢复的模型符合相关因素结构。此外,我们还表明,标准的双因素模型实际上更符合具有附加复杂性的条件下生成的数据。因此,在大多数情况下,拟合指数必然且正确地倾向于双因素模型。我们解释了几个拟合指数的观察到的行为,从而表明结果不是由偏差引起的,而是实际上与预期和期望的行为一致。(PsycInfo 数据库记录(c)2022 APA,保留所有权利)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验