Suppr超能文献

预测PD-1/PD-L1检查点阻断反应的生物标志物模式比较:一项系统评价和荟萃分析。

Comparison of Biomarker Modalities for Predicting Response to PD-1/PD-L1 Checkpoint Blockade: A Systematic Review and Meta-analysis.

作者信息

Lu Steve, Stein Julie E, Rimm David L, Wang Daphne W, Bell J Michael, Johnson Douglas B, Sosman Jeffrey A, Schalper Kurt A, Anders Robert A, Wang Hao, Hoyt Clifford, Pardoll Drew M, Danilova Ludmila, Taube Janis M

机构信息

Department of Dermatology, Johns Hopkins Medical Institutions, Baltimore, Maryland.

Department of Pathology, Yale University School of Medicine, New Haven, Connecticut.

出版信息

JAMA Oncol. 2019 Aug 1;5(8):1195-1204. doi: 10.1001/jamaoncol.2019.1549.

Abstract

IMPORTANCE

PD-L1 (programmed cell death ligand 1) immunohistochemistry (IHC), tumor mutational burden (TMB), gene expression profiling (GEP), and multiplex immunohistochemistry/immunofluorescence (mIHC/IF) assays have been used to assess pretreatment tumor tissue to predict response to anti-PD-1/PD-L1 therapies. However, the relative diagnostic performance of these modalities has yet to be established.

OBJECTIVE

To compare studies that assessed the diagnostic accuracy of PD-L1 IHC, TMB, GEP, and mIHC/IF in predicting response to anti-PD-1/PD-L1 therapy.

EVIDENCE REVIEW

A search of PubMed (from inception to June 2018) and 2013 to 2018 annual meeting abstracts from the American Association for Cancer Research, American Society of Clinical Oncology, European Society for Medical Oncology, and Society for Immunotherapy of Cancer was conducted to identify studies that examined the use of PD-L1 IHC, TMB, GEP, and mIHC/IF assays to determine objective response to anti-PD-1/PD-L1 therapy. For PD-L1 IHC, only clinical trials that resulted in US Food and Drug Administration approval of indications for anti-PD-1/PD-L1 were included. Studies combining more than 1 modality were also included. Preferred Reporting Items for Systematic Reviews and Meta-analysis guidelines were followed. Two reviewers independently extracted the clinical outcomes and test results for each individual study.

MAIN OUTCOMES AND MEASURES

Summary receiver operating characteristic (sROC) curves; their associated area under the curve (AUC); and pooled sensitivity, specificity, positive and negative predictive values (PPV, NPV), and positive and negative likelihood ratios (LR+ and LR-) for each assay modality.

RESULTS

Tumor specimens representing over 10 different solid tumor types in 8135 patients were assayed, and the results were correlated with anti-PD-1/PD-L1 response. When each modality was evaluated with sROC curves, mIHC/IF had a significantly higher AUC (0.79) compared with PD-L1 IHC (AUC, 0.65, P < .001), GEP (AUC, 0.65, P = .003), and TMB (AUC, 0.69, P = .049). When multiple different modalities were combined such as PD-L1 IHC and/or GEP + TMB, the AUC drew nearer to that of mIHC/IF (0.74). All modalities demonstrated comparable NPV and LR-, whereas mIHC/IF demonstrated higher PPV (0.63) and LR+ (2.86) than the other approaches.

CONCLUSIONS AND RELEVANCE

In this meta-analysis, tumor mutational burden, PD-L1 IHC, and GEP demonstrated comparable AUCs in predicting response to anti-PD-1/PD-L1 treatment. Multiplex immunohistochemistry/IF and multimodality biomarker strategies appear to be associated with improved performance over PD-L1 IHC, TMB, or GEP alone. Further studies with mIHC/IF and composite approaches with a larger number of patients will be required to confirm these findings. Additional study is also required to determine the most predictive analyte combinations and to determine whether biomarker modality performance varies by tumor type.

摘要

重要性

程序性细胞死亡配体1(PD-L1)免疫组织化学(IHC)、肿瘤突变负荷(TMB)、基因表达谱分析(GEP)以及多重免疫组织化学/免疫荧光(mIHC/IF)检测已被用于评估治疗前肿瘤组织,以预测对抗程序性死亡蛋白1(PD-1)/PD-L1治疗的反应。然而,这些检测方法的相对诊断性能尚未确定。

目的

比较评估PD-L1 IHC、TMB、GEP和mIHC/IF在预测抗PD-1/PD-L1治疗反应中的诊断准确性的研究。

证据综述

检索了PubMed(从创刊到2018年6月)以及2013年至2018年美国癌症研究协会、美国临床肿瘤学会、欧洲医学肿瘤学会和癌症免疫治疗学会年会的摘要,以确定研究中使用PD-L1 IHC、TMB、GEP和mIHC/IF检测来确定对抗PD-1/PD-L1治疗的客观反应的情况。对于PD-L1 IHC,仅纳入那些导致美国食品药品监督管理局批准抗PD-1/PD-L1适应证的临床试验。还纳入了结合多种检测方法的研究。遵循系统评价和Meta分析的首选报告项目指南。两名评价者独立提取每项研究的临床结局和检测结果。

主要结局和指标

汇总受试者工作特征(sROC)曲线;其相关的曲线下面积(AUC);以及每种检测方法的合并灵敏度、特异度、阳性和阴性预测值(PPV、NPV)以及阳性和阴性似然比(LR+和LR-)。

结果

对8135例患者的代表10多种不同实体瘤类型的肿瘤标本进行了检测,并将结果与抗PD-1/PD-L1反应进行了关联。当用sROC曲线评估每种检测方法时,与PD-L1 IHC(AUC为0.65,P<0.001)、GEP(AUC为0.65,P = 0.003)和TMB(AUC为0.69,P = 0.049)相比,mIHC/IF的AUC显著更高(0.79)。当将多种不同检测方法如PD-L1 IHC和/或GEP + TMB联合使用时,AUC更接近mIHC/IF的AUC(0.74)。所有检测方法的NPV和LR-相当,而mIHC/IF的PPV(0.63)和LR+(2.86)高于其他方法。

结论及相关性

在这项Meta分析中,肿瘤突变负荷、PD-L1 IHC和GEP在预测抗PD-1/PD-L1治疗反应方面的AUC相当。多重免疫组织化学/IF和多模式生物标志物策略似乎比单独使用PD-L1 IHC、TMB或GEP表现更好。需要对mIHC/IF和采用更多患者的综合方法进行进一步研究以证实这些发现。还需要进行额外研究以确定最具预测性的分析物组合,并确定生物标志物检测方法的性能是否因肿瘤类型而异。

相似文献

引用本文的文献

8
Multiplex Detection of Biomarkers Empowered by Nanomaterials.纳米材料助力生物标志物的多重检测。
Precis Chem. 2025 Mar 21;3(6):297-318. doi: 10.1021/prechem.4c00096. eCollection 2025 Jun 23.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验