Suppr超能文献

使用Kinect®传感器捕捉上肢大运动类别

Capturing Upper Limb Gross Motor Categories Using the Kinect® Sensor.

作者信息

Seo Na Jin, Crocher Vincent, Spaho Egli, Ewert Charles R, Fathi Mojtaba F, Hur Pilwon, Lum Sara A, Humanitzki Elizabeth M, Kelly Abigail L, Ramakrishnan Viswanathan, Woodbury Michelle L

机构信息

Na Jin Seo, PhD, is Associate Professor, Division of Occupational Therapy, Department of Health Professions, and Associate Professor, Department of Health Science and Research, Medical University of South Carolina, Charleston;

Vincent Crocher, PhD, is Research Associate, School of Engineering, University of Melbourne, Parkville, Victoria, Australia. At the time of the study, he was Postdoctoral Researcher, Department of Industrial and Manufacturing Engineering, University of Wisconsin-Milwaukee.

出版信息

Am J Occup Ther. 2019 Jul/Aug;73(4):7304205090p1-7304205090p10. doi: 10.5014/ajot.2019.031682.

Abstract

IMPORTANCE

Along with growth in telerehabilitation, a concurrent need has arisen for standardized methods of tele-evaluation.

OBJECTIVE

To examine the feasibility of using the Kinect sensor in an objective, computerized clinical assessment of upper limb motor categories.

DESIGN

We developed a computerized Mallet classification using the Kinect sensor. Accuracy of computer scoring was assessed on the basis of reference scores determined collaboratively by multiple evaluators from reviewing video recording of movements. In addition, using the reference score, we assessed the accuracy of the typical clinical procedure in which scores were determined immediately on the basis of visual observation. The accuracy of the computer scores was compared with that of the typical clinical procedure.

SETTING

Research laboratory.

PARTICIPANTS

Seven patients with stroke and 10 healthy adult participants. Healthy participants intentionally achieved predetermined scores.

OUTCOMES AND MEASURES

Accuracy of the computer scores in comparison with accuracy of the typical clinical procedure (immediate visual assessment).

RESULTS

The computerized assessment placed participants' upper limb movements in motor categories as accurately as did typical clinical procedures.

CONCLUSIONS AND RELEVANCE

Computerized clinical assessment using the Kinect sensor promises to facilitate tele-evaluation and complement telehealth applications.

WHAT THIS ARTICLE ADDS

Computerized clinical assessment can enable patients to conduct evaluations remotely in their homes without therapists present.

摘要

重要性

随着远程康复的发展,同时出现了对标准化远程评估方法的需求。

目的

探讨在对上肢运动类别进行客观的计算机化临床评估中使用Kinect传感器的可行性。

设计

我们利用Kinect传感器开发了一种计算机化的槌状指分类法。计算机评分的准确性是根据由多名评估人员通过审查运动视频记录共同确定的参考分数来评估的。此外,我们使用参考分数评估了基于视觉观察立即确定分数的典型临床程序的准确性。将计算机评分的准确性与典型临床程序的准确性进行比较。

地点

研究实验室。

参与者

7名中风患者和10名健康成年参与者。健康参与者有意达到预定分数。

结果与测量

将计算机评分的准确性与典型临床程序(即时视觉评估)的准确性进行比较。

结果

计算机化评估将参与者的上肢运动准确地归类到运动类别中,与典型临床程序一样准确。

结论与意义

使用Kinect传感器进行计算机化临床评估有望促进远程评估并补充远程医疗应用。

本文补充内容

计算机化临床评估可使患者在没有治疗师在场的情况下在家中远程进行评估。

相似文献

1
Capturing Upper Limb Gross Motor Categories Using the Kinect® Sensor.
Am J Occup Ther. 2019 Jul/Aug;73(4):7304205090p1-7304205090p10. doi: 10.5014/ajot.2019.031682.
3
Upper Extremity Functional Evaluation by Fugl-Meyer Assessment Scoring Using Depth-Sensing Camera in Hemiplegic Stroke Patients.
PLoS One. 2016 Jul 1;11(7):e0158640. doi: 10.1371/journal.pone.0158640. eCollection 2016.
4
Kinect-based virtual rehabilitation and evaluation system for upper limb disorders: A case study.
J Back Musculoskelet Rehabil. 2018;31(4):611-621. doi: 10.3233/BMR-140203.
5
Fast Outcome Categorization of the Upper Limb After Stroke.
Stroke. 2022 Feb;53(2):578-585. doi: 10.1161/STROKEAHA.121.035170. Epub 2021 Oct 4.
9
Kinect One-based biomechanical assessment of upper-limb performance compared to clinical scales in post-stroke patients.
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:5720-3. doi: 10.1109/EMBC.2015.7319691.

引用本文的文献

1
Virtual reality assessment of reaching accuracy in patients with recent cerebellar stroke.
BMC Digit Health. 2024;2(1):50. doi: 10.1186/s44247-024-00107-7. Epub 2024 Aug 12.
3
Wearable Sensor to Monitor Quality of Upper Limb Task Practice for Stroke Survivors at Home.
Sensors (Basel). 2024 Jan 16;24(2):554. doi: 10.3390/s24020554.
5
Markerless motion tracking to quantify behavioral changes during robot-assisted gait training: A validation study.
Front Robot AI. 2023 Mar 6;10:1155542. doi: 10.3389/frobt.2023.1155542. eCollection 2023.
6
Spinal alignment measurement with Kinect sensor is valid for thoracic kyphosis but not for lumbar lordosis.
J Orthop Surg Res. 2023 Mar 19;18(1):214. doi: 10.1186/s13018-023-03693-w.
7
Using motion capture technology to assess locomotor development in children.
Digit Health. 2022 Dec 13;8:20552076221144201. doi: 10.1177/20552076221144201. eCollection 2022 Jan-Dec.
9
An LSTM-Based Prediction Method for Lower Limb Intention Perception by Integrative Analysis of Kinect Visual Signal.
J Healthc Eng. 2020 Jul 23;2020:8024789. doi: 10.1155/2020/8024789. eCollection 2020.

本文引用的文献

1
Cost analysis of telerehabilitation after arthroscopic subacromial decompression.
J Telemed Telecare. 2018 Sep;24(8):553-559. doi: 10.1177/1357633X17723367. Epub 2017 Aug 17.
4
Cognitive function in multiple sclerosis improves with telerehabilitation: Results from a randomized controlled trial.
PLoS One. 2017 May 11;12(5):e0177177. doi: 10.1371/journal.pone.0177177. eCollection 2017.
5
Modifying Kinect placement to improve upper limb joint angle measurement accuracy.
J Hand Ther. 2016 Oct-Dec;29(4):465-473. doi: 10.1016/j.jht.2016.06.010. Epub 2016 Oct 18.
6
Upper Extremity Functional Evaluation by Fugl-Meyer Assessment Scoring Using Depth-Sensing Camera in Hemiplegic Stroke Patients.
PLoS One. 2016 Jul 1;11(7):e0158640. doi: 10.1371/journal.pone.0158640. eCollection 2016.
7
Usability evaluation of low-cost virtual reality hand and arm rehabilitation games.
J Rehabil Res Dev. 2016;53(3):321-34. doi: 10.1682/JRRD.2015.03.0045.
10
EVALUATION OF UPPER-LIMB FUNCTION IN PATIENTS WITH OBSTETRIC PALSY AFTER MODIFIED SEVER-L'EPISCOPO PROCEDURE.
Rev Bras Ortop. 2015 Dec 8;47(4):451-4. doi: 10.1016/S2255-4971(15)30127-0. eCollection 2012 Jul-Aug.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验