Suppr超能文献

基于全球地球系统模式的季节性到多年际海洋生态系统预测。

Seasonal to multiannual marine ecosystem prediction with a global Earth system model.

机构信息

Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, NJ 08540, USA.

National Oceanic and Atmospheric Administration/Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08540, USA.

出版信息

Science. 2019 Jul 19;365(6450):284-288. doi: 10.1126/science.aav6634.

Abstract

Climate variations have a profound impact on marine ecosystems and the communities that depend upon them. Anticipating ecosystem shifts using global Earth system models (ESMs) could enable communities to adapt to climate fluctuations and contribute to long-term ecosystem resilience. We show that newly developed ESM-based marine biogeochemical predictions can skillfully predict satellite-derived seasonal to multiannual chlorophyll fluctuations in many regions. Prediction skill arises primarily from successfully simulating the chlorophyll response to the El Niño-Southern Oscillation and capturing the winter reemergence of subsurface nutrient anomalies in the extratropics, which subsequently affect spring and summer chlorophyll concentrations. Further investigations suggest that interannual fish-catch variations in selected large marine ecosystems can be anticipated from predicted chlorophyll and sea surface temperature anomalies. This result, together with high predictability for other marine-resource-relevant biogeochemical properties (e.g., oxygen, primary production), suggests a role for ESM-based marine biogeochemical predictions in dynamic marine resource management efforts.

摘要

气候变化对海洋生态系统及其依赖它们的生物群落有着深远的影响。利用全球地球系统模型(ESMs)来预测生态系统的变化,可以使生物群落适应气候波动,有助于长期的生态系统恢复力。我们表明,新开发的基于 ESM 的海洋生物地球化学预测可以熟练地预测许多地区的卫星衍生的季节性到多年际叶绿素波动。预测技能主要来自于成功模拟叶绿素对厄尔尼诺-南方涛动的响应,并捕获了亚热带地区冬季次表层营养异常的重新出现,这随后影响了春季和夏季的叶绿素浓度。进一步的研究表明,可以根据预测的叶绿素和海表温度异常来预测选定的大型海洋生态系统中的鱼类渔获量的年际变化。这一结果,以及对其他与海洋资源相关的生物地球化学特性(例如,氧气,初级生产力)的高可预测性,表明基于 ESM 的海洋生物地球化学预测在动态海洋资源管理工作中具有重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验