Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, United States.
Stanford Cardiovascular Institute, Stanford, CA, United States.
Sci Rep. 2019 Jul 18;9(1):10431. doi: 10.1038/s41598-019-46873-7.
Heart failure with preserved ejection fraction (HFpEF) is a major cause of morbidity and mortality, accounting for the majority of heart failure (HF) hospitalization. To identify the most complementary predictors of mortality among clinical, laboratory and echocardiographic data, we used cluster based hierarchical modeling. Using Stanford Translational Research Database, we identified patients hospitalized with HFpEF between 2005 and 2016 in whom echocardiogram and NT-proBNP were both available at the time of admission. Comprehensive echocardiographic assessment including left ventricular longitudinal strain (LVLS), right ventricular function and right ventricular systolic pressure (RVSP) was performed. The outcome was defined as all-cause mortality. Among patients identified, 186 patients with complete echocardiographic assessment were included in the analysis. The cohort included 58% female, with a mean age of 78.7 ± 13.5 years, LVLS of -13.3 ± 2.5%, an estimated RVSP of 38 ± 13 mmHg. Unsupervised cluster analyses identified six clusters including ventricular systolic-function cluster, diastolic-hemodynamic cluster, end-organ function cluster, vital-sign cluster, complete blood count and sodium clusters. Using a stepwise hierarchical selection from each cluster, we identified NT-proBNP (standard hazard ratio [95%CI] = 1.56 [1.17-2.08]) and RVSP (1.37 [1.09-1.78]) as independent correlates of outcome. When adding these parameters to the well validated Get with the Guideline Heart Failure risk score, the Chi-square was significantly improved (p = 0.01). In conclusion, NT-proBNP and RVSP were independently predictive in HFpEF among clinical, imaging, and biomarker parameters. Cluster-based hierarchical modeling may help identify the complementally predictive parameters in small cohorts with higher dimensional clinical data.
射血分数保留的心力衰竭(HFpEF)是发病率和死亡率的主要原因,占心力衰竭(HF)住院的大部分。为了确定临床、实验室和超声心动图数据中死亡率的最互补预测因子,我们使用基于聚类的层次建模。使用斯坦福转化研究数据库,我们确定了 2005 年至 2016 年期间因 HFpEF 住院的患者,他们在入院时均进行了超声心动图和 NT-proBNP 检查。进行了全面的超声心动图评估,包括左心室纵向应变(LVLS)、右心室功能和右心室收缩压(RVSP)。结局定义为全因死亡率。在确定的患者中,有 186 名患者进行了完整的超声心动图评估,包括在分析中。该队列包括 58%的女性,平均年龄为 78.7±13.5 岁,LVLS 为-13.3±2.5%,估计 RVSP 为 38±13mmHg。无监督聚类分析确定了六个聚类,包括心室收缩功能聚类、舒张血流动力学聚类、终末器官功能聚类、生命体征聚类、全血细胞和钠聚类。从每个聚类中逐步进行层次选择,我们确定 NT-proBNP(标准风险比[95%CI]为 1.56[1.17-2.08])和 RVSP(1.37[1.09-1.78])是独立的预后相关因素。当将这些参数添加到经过验证的 Get with the Guideline 心力衰竭风险评分中时,卡方值显著提高(p=0.01)。总之,在临床、影像和生物标志物参数中,NT-proBNP 和 RVSP 是 HFpEF 的独立预测因子。基于聚类的层次建模可能有助于在具有更高维度临床数据的小队列中识别互补预测参数。