Suppr超能文献

利用基于扩散的方法发现药物副作用之间的关联。

Discovering Links Between Side Effects and Drugs Using a Diffusion Based Method.

机构信息

Data Science Institute, Insight Centre for Data Analytics, National University of Ireland Galway, Galway, Ireland.

Discipline of General Practice, School of Medicine, National University of Ireland Galway, Galway, Ireland.

出版信息

Sci Rep. 2019 Jul 18;9(1):10436. doi: 10.1038/s41598-019-46939-6.

Abstract

Identifying the unintended effects of drugs (side effects) is a very important issue in pharmacological studies. The laboratory verification of associations between drugs and side effects requires costly, time-intensive research. Thus, an approach to predicting drug side effects based on known side effects, using a computational model, is highly desirable. To provide such a model, we used openly available data resources to model drugs and side effects as a bipartite graph. The drug-drug network is constructed using the word2vec model where the edges between drugs represent the semantic similarity between them. We integrated the bipartite graph and the semantic similarity graph using a matrix factorization method and a diffusion based model. Our results show the effectiveness of this integration by computing weighted (i.e., ranked) predictions of initially unknown links between side effects and drugs.

摘要

识别药物的非预期作用(副作用)是药理学研究中一个非常重要的问题。实验室验证药物和副作用之间的关联需要昂贵且耗时的研究。因此,非常需要一种基于已知副作用的计算模型来预测药物副作用的方法。为了提供这样的模型,我们使用了公开可用的数据资源,将药物和副作用建模为一个二分图。使用 word2vec 模型构建药物-药物网络,其中药物之间的边表示它们之间的语义相似性。我们使用矩阵分解方法和基于扩散的模型将二分图和语义相似性图集成在一起。通过计算最初未知的副作用和药物之间的加权(即排名)预测,我们展示了这种集成的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验