Suppr超能文献

二维组装的超细钴氧化物纳米晶锚定在单层 TiCT 纳米片上,用于锂离子电池的锂存储性能增强。

A two-dimensional assembly of ultrafine cobalt oxide nanocrystallites anchored on single-layer TiCT nanosheets with enhanced lithium storage for Li-ion batteries.

机构信息

School of Material Science & Engineering, University of Jinan, Jinan, 250022, P. R. China.

出版信息

Nanoscale. 2019 Sep 28;11(36):16755-16766. doi: 10.1039/c9nr04377b. Epub 2019 Jul 19.

Abstract

Recently, Ti-based MXenes were expected to compete with graphene and other carbonaceous materials towards Li-ion batteries (LIBs) due to their two-dimensional (2D) open structure, cost efficiency, superior conductivity and low Li diffusion barrier. However, the relatively moderate capacity and aggregation tendency hamper their practical applications in next-generation LIBs. Herein, we explore for the first time a scalable bottom-up approach to fabricate a series of CoO@single-layer TiCT (s-TiCT) hybrids, where numerous homogeneous CoO nanocrystallites (NCs), serving both as a spacer and electroactive phase, are anchored uniformly on the surface of s-TiCT nanosheets (NSs) through the Co-O-Ti interfacial bonds. Furthermore, detailed experimental analyses clearly shed light upon the formation mechanism of the hybrid CoO@s-TiCT NSs. Thanks to the structural and compositional merits, the 2D CoO@s-TiCT NSs even exhibit a remarkable high-rate capacity of ∼223 mA h g at an ultra-high current density of 10 A g, and a long-span cycle life with a high reversible capacity of 550 mA h g at 1 A g after 700 consecutive cycles. Corresponding density functional theory calculation further confirms that the Co-O-Ti interfacial function leads to an even higher pseudocapacitive contribution and faster lithium storage behavior due to the enhanced interfacial electron transfer.

摘要

最近,由于二维(2D)开放结构、成本效益、优越的导电性和较低的锂离子扩散势垒,Ti 基 MXenes 有望与石墨烯和其他碳质材料竞争,用于锂离子电池(LIBs)。然而,相对适中的容量和团聚倾向阻碍了它们在下一代 LIBs 中的实际应用。在此,我们首次探索了一种可扩展的自下而上的方法来制造一系列 CoO@单层 TiCT(s-TiCT)杂化物,其中大量均匀的 CoO 纳米晶(NCs)作为间隔物和电活性相,通过 Co-O-Ti 界面键均匀地锚定在 s-TiCT 纳米片(NSs)的表面上。此外,详细的实验分析清楚地揭示了杂化 CoO@s-TiCT NSs 的形成机制。由于结构和组成上的优点,2D CoO@s-TiCT NSs 甚至在超高电流密度 10 A g 下表现出高达 223 mA h g 的显著高倍率容量,以及在 700 次连续循环后在 1 A g 时具有高达 550 mA h g 的高可逆容量的长循环寿命。相应的密度泛函理论计算进一步证实,由于增强的界面电子转移,Co-O-Ti 界面功能导致更高的赝电容贡献和更快的锂离子存储行为。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验