Suppr超能文献

确定化学疾病风险值,以优先考虑环境因素、遗传变异体与人类疾病之间的关联。

Determination of chemical-disease risk values to prioritize connections between environmental factors, genetic variants, and human diseases.

机构信息

Toxicology Program, North Carolina State University, Raleigh, NC 27695-7617, United States of America; Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695-7617, United States of America; Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7617, United States of America.

Toxicology Program, North Carolina State University, Raleigh, NC 27695-7617, United States of America; Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695-7617, United States of America; Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7617, United States of America; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695-7617, United States of America.

出版信息

Toxicol Appl Pharmacol. 2019 Sep 15;379:114674. doi: 10.1016/j.taap.2019.114674. Epub 2019 Jul 16.

Abstract

Traditional methods for chemical risk assessment are too time-consuming and resource-intensive to characterize either the diversity of chemicals to which humans are exposed or how that diversity may manifest in population susceptibility differences. The advent of novel toxicological data sources and their integration with bioinformatic databases affords opportunities for modern approaches that consider gene-environment (GxE) interactions in population risk assessment. Here, we present an approach that systematically links multiple data sources to relate chemical risk values to diseases and gene-disease variants. These data sources include high-throughput screening (HTS) results from Tox21/ToxCast, chemical-disease relationships from the Comparative Toxicogenomics Database (CTD), hazard data from resources like the Integrated Risk Information System, exposure data from the ExpoCast initiative, and gene-variant-disease information from the DisGeNET database. We use these integrated data to identify variants implicated in chemical-disease enrichments and develop a new value that estimates the risk of these associations toward differential population responses. Finally, we use this value to prioritize chemical-disease associations by exploring the genomic distribution of variants implicated in high-risk diseases. We offer this modular approach, termed DisQGOS (Disease Quotient Genetic Overview Score), for relating overall chemical-disease risk to potential for population variable responses, as a complement to methods aiming to modernize aspects of risk assessment.

摘要

传统的化学风险评估方法既耗时又耗资源,无法描述人类接触的化学物质的多样性,也无法说明这种多样性可能如何体现在人群易感性差异上。新型毒理学数据资源的出现及其与生物信息数据库的整合,为考虑人群风险评估中的基因-环境(GxE)相互作用的现代方法提供了机会。在这里,我们提出了一种系统地将多个数据源联系起来的方法,将化学风险值与疾病和基因-疾病变异联系起来。这些数据源包括来自 Tox21/ToxCast 的高通量筛选(HTS)结果、来自比较毒理学基因组数据库(CTD)的化学-疾病关系、来自综合风险信息系统等资源的危害数据、来自 ExpoCast 计划的暴露数据以及来自 DisGeNET 数据库的基因变异-疾病信息。我们利用这些综合数据来识别与化学-疾病富集相关的变异,并开发一种新的价值来估计这些关联对人群不同反应的风险。最后,我们通过探索与高风险疾病相关的变异的基因组分布,利用该值来对化学-疾病关联进行优先级排序。我们提出了一种名为 DisQGOS(疾病分数遗传概览评分)的模块化方法,用于将整体化学-疾病风险与人群可变反应的潜力联系起来,作为对旨在使风险评估现代化的方法的补充。

相似文献

9
Advancing exposure characterization for chemical evaluation and risk assessment.推进化学评估和风险评估的暴露特征描述。
J Toxicol Environ Health B Crit Rev. 2010 Feb;13(2-4):299-313. doi: 10.1080/10937404.2010.483947.

本文引用的文献

2
4
Using meshes for MeSH term enrichment and semantic analyses.使用网格进行 MeSH 术语富集和语义分析。
Bioinformatics. 2018 Nov 1;34(21):3766-3767. doi: 10.1093/bioinformatics/bty410.
10
Chemical Risk Assessment: Traditional vs Public Health Perspectives.化学风险评估:传统视角与公共卫生视角
Am J Public Health. 2017 Jul;107(7):1032-1039. doi: 10.2105/AJPH.2017.303771. Epub 2017 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验